Sublimation sandwich route to ultralong zinc-blende ZnSe nanowires and the cathodoluminescence properties of individual nanowires

被引:11
作者
Zhu, H. W. [1 ]
Li, P. G. [1 ]
Lei, M. [1 ]
Li, L. H. [2 ]
Wang, S. L. [1 ]
Tang, W. H. [1 ]
机构
[1] Zhejiang Sci Tech Univ, Ctr Optoelect Mat & Devices, Dept Phys, Hangzhou 310018, Peoples R China
[2] Univ Tennessee, Dept Geol Geog & Phys, Martin, TN 38238 USA
基金
中国国家自然科学基金;
关键词
Semiconductors; Nanostructured materials; Optical property; DEPENDENT GROWTH DIRECTION; PHOTOLUMINESCENCE; NANORIBBONS;
D O I
10.1016/j.jallcom.2010.12.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sublimation sandwich method (SSM) was developed to fabricate ZnSe nanowires assisted by Au-catalytic vapor-liquid-solid (VLS) process. The ZnSe nanowires have zinc-blende structure and the length is ultralong, up to tens of micrometers. High-resolution transmission electron microscopic (HRTEM) investigations reveal that there are two types of nanowires: well crystalline nanowires and poor crystalline nanowires with high density of bulk defects e.g. stacking faults, dislocations and twinning defects. The cathodoluminescence spectra indicate significant difference in optical properties of these two types of nanowires. We deduce that V-zn and Zn-i are the main reason for the deep defects related green-red emission observed in well crystalline nanowires, while the bulk defects in the poor crystalline nanowires should be responsible for the deep defects related emissions centered at 515 and 604 nm. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3306 / 3309
页数:4
相关论文
共 33 条
  • [1] Polarization properties and switchable assembly of ultranarrow ZnSe nanorods
    Acharya, Somobrata
    Panda, Asit B.
    Efrima, Shlomo
    Golan, Ynval
    [J]. ADVANCED MATERIALS, 2007, 19 (08) : 1105 - 1108
  • [2] BARANOV PG, 1998, MRS INTERNET J N S R, V50, P1
  • [3] The influence of the early stage of ZnSe growth on GaAs(001) on the defect-related luminescence
    Buda, B
    Wang, C
    Wrede, W
    Leifeld, O
    As, DJ
    Schikora, D
    Lischka, K
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1998, 13 (08) : 921 - 926
  • [4] Cai Y, 2006, ADV MATER, V18, P109, DOI 10.1002/adma.200500822
  • [5] Temperature-dependent growth direction of ultrathin ZnSe nanowires
    Cai, Yuan
    Chan, Siu Keung
    Sou, Iam Keong
    Chan, Yn Tai
    Su, Dang Sheng
    Wang, Ning
    [J]. SMALL, 2007, 3 (01) : 111 - 115
  • [6] Electronic Transport in Superlattice-Structured ZnO Nanohelix
    Gao, Pu-Xian
    Ding, Yong
    Wang, Zhong Lin
    [J]. NANO LETTERS, 2009, 9 (01) : 137 - 143
  • [7] Formation of dendrimer nanotubes by layer-by-layer deposition
    Kim, DH
    Karan, P
    Göring, P
    Leclaire, J
    Caminade, AM
    Majoral, JP
    Gösele, U
    Steinhart, M
    Knoll, W
    [J]. SMALL, 2005, 1 (01) : 99 - 102
  • [8] ZnSe nanobelts and nanowires synthesized by a closed space vapor transport technique
    Hu, Z. D.
    Duan, X. F.
    Gao, M.
    Chen, Q.
    Peng, L. -M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (07) : 2987 - 2991
  • [9] Room-temperature ultraviolet nanowire nanolasers
    Huang, MH
    Mao, S
    Feick, H
    Yan, HQ
    Wu, YY
    Kind, H
    Weber, E
    Russo, R
    Yang, PD
    [J]. SCIENCE, 2001, 292 (5523) : 1897 - 1899
  • [10] Quasi-horizontal GaN nanowire array network grown by sublimation sandwich technique
    Jian, J. K.
    Wang, Cong
    Lei, M.
    Zhang, Z. H.
    Wang, T. M.
    Chen, X. L.
    [J]. APPLIED SURFACE SCIENCE, 2008, 254 (20) : 6637 - 6641