The rate of concentration for the radially symmetric solution to a degenerate drift-diffusion equation with the mass critical exponent

被引:1
作者
Wakui, Hiroshi [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Drift-diffusion equation; Blow up; Concentration; Mass critical; Hardy-Littlewood-Soblev inequality; KELLER-SEGEL MODEL; PARABOLIC EQUATION; KINETIC-THEORY; GLOBAL EXISTENCE; POISSON SYSTEM; BLOW-UP; SOBOLEV; POWER;
D O I
10.1007/s00013-018-1225-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the concentration rate of the total mass for radially symmetric blow-up solutions to the Cauchy problem of a degenerate drift-diffusion system with the mass critical exponent. We proved that the radially symmetric solution blows up in finite time when the initial data has negative free energy. We show that the mass concentration phenomenon occurs with the sharp lower constant related to the best constant of the Hardy-Littlewood-Sobolev inequality and the concentration rate of the total mass.
引用
收藏
页码:535 / 548
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2005, PROGR NONLINEAR DIFF
[2]  
[Anonymous], 2001, ANALYSIS-UK
[3]   GLOBAL EXISTENCE AND FINITE TIME BLOW-UP FOR CRITICAL PATLAK-KELLER-SEGEL MODELS WITH INHOMOGENEOUS DIFFUSION [J].
Bedrossian, Jacob ;
Kim, Inwon C. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :934-964
[4]   Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion [J].
Bedrossian, Jacob ;
Rodriguez, Nancy ;
Bertozzi, Andrea L. .
NONLINEARITY, 2011, 24 (06) :1683-1714
[5]  
Biler P., 2004, BANACH CTR PUBL, V66, P61
[6]  
Blanchet A., 2006, ELECTRON J DIFFER EQ, V44, P1
[7]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[8]   MULTIDIMENSIONAL DEGENERATE KELLER-SEGEL SYSTEM WITH CRITICAL DIFFUSION EXPONENT 2n/(n+2) [J].
Chen, Li ;
Liu, Jian-Guo ;
Wang, Jinhuan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) :1077-1102
[9]   Non-isothermal Smoluchowski-Poisson equations as a singular limit of the Navier-Stokes-Fourier-Poisson system [J].
Feireisl, Eduard ;
Laurencot, Philippe .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (04) :325-349
[10]   Threshold of global behavior of solutions to a degenerate drift-diffusion system in between two critical exponents [J].
Kimijima, Atsushi ;
Nakagawa, Kazushige ;
Ogawa, Takayoshi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (1-2) :441-472