Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem

被引:26
作者
Baran, Burcu [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Non-split Cartan subgroup; Modular curve; Genus formula; POINTS;
D O I
10.1016/j.jnt.2010.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y-ns(+)(n) be the open non-cuspidal locus of the modular curve X-ns(+)(n) associated to the normalizer of a non-split Cartan subgroup of level n. As Serre pointed out, an imaginary quadratic field of class number one gives rise to an integral point on Y-ns(+)(n) for suitably chosen n. In this note, we give a genus formula for the modular curves X-ns(+)(n) and we give three new solutions to the class number one problem using the modular curves X-ns(+)(n) for n = 16,20,21. These are the only such modular curves of genus <= 2 that had not yet been exploited. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2753 / 2772
页数:20
相关论文
共 16 条
[1]  
[Anonymous], 1994, GRAD TEXTS MATH
[2]  
BARAN B, MODULAR CURVE UNPUB
[3]   A modular curve of level 9 and the class number one problem [J].
Baran, Burcu .
JOURNAL OF NUMBER THEORY, 2009, 129 (03) :715-728
[4]  
Bruin N, 2006, ALGORITHM COMP MATH, V19, P63
[5]   On Siegel's modular curve of level 5 and the class number one problem [J].
Chen, I .
JOURNAL OF NUMBER THEORY, 1999, 74 (02) :278-297
[6]  
Chen IM, 2004, MATH COMPUT, V73, P869, DOI 10.1090/S0025-5718-03-01562-X
[7]  
Elkies N. D., 1998, MSRI PUBLICATION, V35, P51
[8]  
Heegner K., 1952, Math. Z., V56, P227
[9]   A NOTE ON THE INTEGRAL POINTS OF A MODULAR CURVE OF LEVEL-7 [J].
KENKU, MA .
MATHEMATIKA, 1985, 32 (63) :45-48
[10]  
SCHOOF R, INTEGRAL POINT UNPUB