Problems and their origins of Ni-rich layered oxide cathode materials

被引:587
作者
Zhang, Sheng S. [1 ]
机构
[1] US Army, Electrochem Branch, FCDD RLS DC, Sensors & Electron Devices Directorate,Res Lab, Adelphi, MD 20783 USA
关键词
Ni-rich layered oxide; Capacity degradation; Oxidation of lattice oxygen; Oxygen evolution; Phase transition; LITHIUM-ION BATTERIES; SOLID-STATE CHEMISTRY; THERMAL-STABILITY; ELECTROCHEMICAL PERFORMANCE; CYCLING STABILITY; STRUCTURAL STABILITY; SURFACE MODIFICATION; DEGRADATION; LI; TRANSITION;
D O I
10.1016/j.ensm.2019.08.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-rich layered oxides, LiNixCoyMnzO2 (NCM) and LiNixCoyAlzO2 (NCA) with x + y + z = 1 and x >= 0.8, are regarded to be the best choice for the cathode material of high energy Li-ion batteries due to their combined advantages in capacity, working potential and manufacture cost. However, their application in practical Li-ion batteries is hindered by two essential problems of (1) performance degradation and (2) safety hazard over the whole life of battery. Performance degradation behaves as declines in battery's capacity and working voltage as well as the battery's swelling and impedance growth; Safety hazard arises from thermal runaway under abuse conditions such as overcharging, overheating, and electric shorting. It appears that nearly all problems can be ultimately attributed to the loss of oxygen, especially caused by the oxidation of lattice oxygen in H3 phase where the capacities are contributed by both of the Ni and O redox couples. In this review, the problems and their origins of Ni-rich layered oxides are overviewed, and the solutions attempted to mitigate these problems are outlined.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 84 条
[1]   CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD [J].
ARAI, H ;
OKADA, S ;
OHTSUKA, H ;
ICHIMURA, M ;
YAMAKI, J .
SOLID STATE IONICS, 1995, 80 (3-4) :261-269
[2]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[3]   Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries [J].
Binder, Jan O. ;
Culver, Sean P. ;
Pinedo, Ricardo ;
Weber, Dominik A. ;
Friedrich, Markus S. ;
Gries, Katharina I. ;
Volz, Kerstin ;
Zeier, Wolfgang G. ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (51) :44452-44462
[4]   Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries [J].
Chen, Guorong ;
An, Juan ;
Meng, Yiming ;
Yuan, Changzhou ;
Matthews, Bryan ;
Dou, Fei ;
Shi, Liyi ;
Zhou, Yongfeng ;
Song, Pingan ;
Wu, Gang ;
Zhang, Dengsong .
NANO ENERGY, 2019, 57 :157-165
[5]   Improving the capacity retention of LiCoO2 cycled to 4.5 V by heat-treatment [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (01) :A11-A14
[6]   Studies of LiCoO2 coated with metal oxides [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (11) :A221-A224
[7]   Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating [J].
Cheng, Xiaopeng ;
Zheng, Jianming ;
Lu, Junxia ;
Li, Yonghe ;
Yan, Pengfei ;
Zhang, Yuefei .
NANO ENERGY, 2019, 62 :30-37
[8]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[9]   Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries [J].
Cho, Woosuk ;
Lim, Young Jin ;
Lee, Sun-Me ;
Kim, Jong Hwa ;
Song, Jun-Ho ;
Yu, Ji-Sang ;
Kim, Young-Jun ;
Park, Min-Ri .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) :38915-38921
[10]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270