On a Generalization for Tribonacci Quaternions

被引:21
作者
Cerda-Morales, Gamaliel [1 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Blanco Viel 596, Valparaiso, Chile
关键词
Quaternion; generalized Tribonacci sequence; Narayana sequence; third order Jacobsthal sequence; IDENTITIES;
D O I
10.1007/s00009-017-1042-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V-n denote the third order linear recursive sequence defined by the initial values V-0, V-1 and V-2 and the recursion V-n = rVn(-1+) sV(n-2) + tV(n-3) if n >= 3, where r, s, and t are real constants. The {V-n}(n >= 0) are generalized Tribonacci numbers and reduce to the usual Tribonacci numbers when r = s = t = 1 and to the 3-bonacci numbers when r = s = 1 and t = 0. In this study, we introduced a quaternion sequence which has not been introduced before. We show that the new quaternion sequence that we introduced includes the previously introduced Tribonacci, Padovan, Narayana and third order Jacobsthal quaternion sequences. We obtained the Binet formula, summation formula and the norm value for this new quaternion sequence.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Involutive automorphisms and derivations of the quaternions
    Kizil, Eyup
    Da Silva, Adriano
    Duman, Okan
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (07) : 1944 - 1954
  • [32] Binet type formula for Tribonacci sequence with arbitrary initial numbers
    Ilija, Tanackov
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 63 - 68
  • [33] Slice Starlike Functions Over Quaternions
    Xu, Zhenghua
    Ren, Guangbin
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) : 3775 - 3806
  • [34] Quaternions: Quantum calculus approach with applications
    Akkus, Ilker
    Kizilaslan, Gonca
    KUWAIT JOURNAL OF SCIENCE, 2019, 46 (04) : 1 - 13
  • [35] De Moivre's formula for quaternions
    Cho, E
    APPLIED MATHEMATICS LETTERS, 1998, 11 (06) : 33 - 35
  • [36] Slice Starlike Functions Over Quaternions
    Zhenghua Xu
    Guangbin Ren
    The Journal of Geometric Analysis, 2018, 28 : 3775 - 3806
  • [37] Slice Spirallike Functions over Quaternions
    Xu, Zhenghua
    Zhang, Die
    Liu, Yuan
    Si, Jiajia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (07)
  • [38] On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions
    Brod, Dorota
    Szynal-Liana, Anetta
    Wloch, Iwona
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) : 1239 - 1248
  • [39] On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions
    Dorota Bród
    Anetta Szynal-Liana
    Iwona Włoch
    Czechoslovak Mathematical Journal, 2022, 72 : 1239 - 1248
  • [40] Functional equations for vector products and quaternions
    Nyul, Balazs
    Nyul, Gabor
    AEQUATIONES MATHEMATICAE, 2013, 85 (1-2) : 35 - 39