Nonlinear filtering using random particles

被引:35
作者
DelMoral, P [1 ]
机构
[1] UNIV TOULOUSE 3,LAB STAT & PROBABILITES,URA 745,F-31062 TOULOUSE,FRANCE
关键词
nonlinear filtering; particle methods;
D O I
10.1137/1140078
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with extending the particle solution of nonlinear discrete-time filtering problems developed in [Ph.D. thesis, Universite Paul Sabatier, Tolouse, France, 1994], [Contrat 89.34.553.00.470.75.01, DIGILOG-DRET, 1992], and [Proc. 14ieme Collogue GRETSI, Juan les Pins, September, 13-16, 1993] to continuous-time problems. The minimal sufficient conditions for a time-uniform convergence of our particle filter are quite similar to those described in [Ph.D. thesis, Universite Paul Sabatier, Tolouse, France, 1994]. Guided by Sussmann's condition, which ensures the continuity of the conditional expectation, we introduce a new regularity concept in this paper.
引用
收藏
页码:690 / 701
页数:12
相关论文
共 9 条
  • [1] DELMORAL P, 1993, P 14 C GRETSI JUAN P
  • [2] DELMORAL P, 1994, THESIS U P SABATIER
  • [3] DELMORAL P, IN PRESS RUSSIAN J M
  • [4] DELMORAL P, 1992, ESTIMATION COMMANDE
  • [5] DELMORAL P, 1991, FILTRAGE NON LINEAIR
  • [6] FLORCHINGER P, 1989, THESIS U METZ METZ F
  • [7] ESTIMATION OF STOCHASTIC SYSTEMS - ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATION ERRORS
    KALLIANPUR, G
    STRIEBEL, C
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (03): : 785 - +
  • [8] Kallianpur G., 1980, STOCHASTIC FILTERING
  • [9] LIPTSER RS, 1977, STATISTICS RANDOM PR, V1