Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises

被引:11
作者
Albeverio, Sergio [2 ]
Debussche, Arnaud [3 ,4 ]
Xu, Lihu [1 ]
机构
[1] Brunel Univ, Dept Math, Uxbridge UB8 3PH, Middx, England
[2] Univ Bonn, Dept Appl Math, Bonn, Germany
[3] ENS Cachan Bretagne, F-35170 Bruz, France
[4] IRMAR, F-35170 Bruz, France
关键词
3D stochastic Navier-Stokes equation (SNS); Kolmogorov equation; Galerkin approximation; Strong Feller; Exponential mixing; Mildly degenerate noises; Malliavin calculus; ERGODICITY; UNIQUENESS; PDE;
D O I
10.1007/s00245-012-9172-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.
引用
收藏
页码:273 / 308
页数:36
相关论文
共 23 条
[1]   Exponential mixing of the 2D stochastic Navier-Stokes dynamics [J].
Bricmont, J ;
Kupiainen, A ;
Lefevere, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) :87-132
[2]   Ergodicity for the 3D stochastic Navier-Stokes equations [J].
Da Prato, G ;
Debussche, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08) :877-947
[3]  
Da Prato G., 1996, LONDON MATH SOC LECT, V229
[4]   Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise [J].
Debussche, A ;
Odasso, C .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :305-324
[5]  
E WN, 2001, COMMUN PUR APPL MATH, V54, P1386
[6]   Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise [J].
Eckmann, JP ;
Hairer, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (03) :523-565
[7]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286
[8]   Markov selections for the 3D stochastic Navier-Stokes equations [J].
Flandoli, Franco ;
Romito, Marco .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) :407-458
[9]  
Folland G. B., 1999, Modern techniques and their applications, V2nd
[10]   Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing [J].
Hairer, Martin ;
Mattingly, Jonathan C. .
ANNALS OF MATHEMATICS, 2006, 164 (03) :993-1032