Periodic solutions of neutral fractional differential equations

被引:2
作者
Henriquez, Hernan R. [1 ]
Poblete, Veronica [2 ]
机构
[1] Univ Santiago, USACH, Dept Matemat, Casilla 307 Correo 2, Santiago, Chile
[2] Univ Chile, Dept Matemat, Santiago 3425, Chile
关键词
Operator-valued Fourier multipliers; R-boundedness; periodic vector-valued Lebesgue spaces; neutral functional differential equations; BANACH-SPACES; INTEGRODIFFERENTIAL EQUATIONS; AUTOMORPHIC SOLUTIONS; REGULARITY; SYSTEMS; THEOREM;
D O I
10.1002/mana.201600214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the existence of periodic solutions for some abstract neutral functional fractional differential equations with finite delay when the underlying space is a UMD space.
引用
收藏
页码:2858 / 2873
页数:16
相关论文
共 40 条
[1]  
Adimy M., 1999, Differ. Equ. Dyn. Syst, V7, P371
[2]  
Adimy M., 2001, CANADIAN APPL MATH Q, V9, P1
[3]   Bohr-Neugebauer type theorem for some partial neutral functional differential equations [J].
Adimy, Mostafa ;
Elazzouzi, Abdelhai ;
Ezzinbi, Khalil .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (05) :1145-1160
[4]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[5]   Application of fractional derivatives in thermal analysis of disk brakes [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :191-206
[6]   Exponential dichotomy and pseudo-almost automorphy for partial neutral functional differential equations [J].
Alia, Mohamed ;
Ezzinbi, Khalil ;
Fatajou, Samir .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :2210-2226
[7]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[8]   Regular linear systems governed by neutral FDEs [J].
Bounit, Hamid ;
Hadd, Said .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) :836-858
[9]  
Butzer P.L., 1975, Lecture Notes in Math, V457, P116
[10]   FRACTIONAL RELAXATION AND FRACTIONAL OSCILLATION MODELS INVOLVING ERDELYI-KOBER INTEGRALS [J].
Concezzi, Moreno ;
Garra, Roberto ;
Spigler, Renato .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) :1212-1231