Hermite-Hadamard and Ostrowski Type Inequalities on Hemispheres

被引:8
作者
Barani, A. [1 ]
机构
[1] Lorestan Univ, Dept Math, POB 465, Khorramabad, Iran
关键词
Hermite-Hadamard's inequality; Ostrowski's inequality; convex functions; hemispheres; CONVEX-FUNCTIONS; RIEMANNIAN-MANIFOLDS; SPACE;
D O I
10.1007/s00009-016-0743-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we illustrate the Hermite-Hadamard inequality for convex and strongly convex functions defined on hemispheres. A version of Ostrowski's type inequality for Lipschitz functions is also given.
引用
收藏
页码:4253 / 4263
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1976, Differential Geometry of Curves and Surfaces
[2]   Regularization by sup-inf convolutions on Riemannian manifolds: An extension of Lasry-Lions theorem to manifolds of bounded curvature [J].
Azagra, D. ;
Ferrera, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) :994-1024
[3]   Invex sets and preinvex functions on Riemannian manifolds [J].
Barani, A. ;
Pouryayevali, M. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :767-779
[4]   On the metric projection onto φ-convex subsets of Hadamard manifolds [J].
Barani, A. ;
Hosseini, S. ;
Pouryayevali, M. R. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :815-826
[5]   HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHEN A POWER OF THE ABSOLUTE VALUE OF THE FIRST DERIVATIVE IS P-CONVEX [J].
Barani, A. ;
Barani, S. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (01) :126-134
[6]   Characterizations of convexity via Hadamard's inequality [J].
Bessenyei, M ;
Páles, Z .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (01) :53-62
[7]   A VERSION OF THE HERMITE-HADAMARD INEQUALITY IN A NONPOSITVE CURVATURE SPACE [J].
Conde, Cristian .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02) :159-167
[8]  
Dragomir S. S., 2000, RGMIA Monographs
[9]  
Dragomir S. S., 2000, J. Inequal. Pure Appl. Math, V1, P2
[10]  
Dragomir SS, 2000, MATH INEQUAL APPL, V3, P177