Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision

被引:149
作者
Cui, Boyuan [1 ,2 ]
Fan, Zhen [1 ,2 ]
Li, Wenjie [1 ,2 ]
Chen, Yihong [1 ,2 ]
Dong, Shuai [1 ,2 ]
Tan, Zhengwei [1 ,2 ]
Cheng, Shengliang [1 ,2 ]
Tian, Bobo [3 ]
Tao, Ruiqiang [1 ,2 ]
Tian, Guo [1 ,2 ]
Chen, Deyang [1 ,2 ]
Hou, Zhipeng [1 ,2 ]
Qin, Minghui [1 ,2 ]
Zeng, Min [1 ,2 ]
Lu, Xubing [1 ,2 ]
Zhou, Guofu [4 ]
Gao, Xingsen [1 ,2 ]
Liu, Jun-Ming [1 ,2 ,5 ,6 ]
机构
[1] South China Normal Univ, South China Acad Adv Optoelect, Inst Adv Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[3] East China Normal Univ, Key Lab Polar Mat & Devices, Minist Educ, Shanghai 200241, Peoples R China
[4] South China Normal Univ, Natl Ctr Int Res Green Optoelect, Guangzhou 510006, Peoples R China
[5] Nanjing Univ, Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[6] Nanjing Univ, Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSOR; MEMRISTOR; IMPRINT;
D O I
10.1038/s41467-022-29364-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Robust, fast, and low-power hardware platforms are desirable for the implementation of real-time machine vision. Here the authors develop a computing-in-sensor network using ferroelectric photo sensors with remanent-polarization-controlled photo responsivities. Nowadays the development of machine vision is oriented toward real-time applications such as autonomous driving. This demands a hardware solution with low latency, high energy efficiency, and good reliability. Here, we demonstrate a robust and self-powered in-sensor computing paradigm with a ferroelectric photosensor network (FE-PS-NET). The FE-PS-NET, constituted by ferroelectric photosensors (FE-PSs) with tunable photoresponsivities, is capable of simultaneously capturing and processing images. In each FE-PS, self-powered photovoltaic responses, modulated by remanent polarization of an epitaxial ferroelectric Pb(Zr0.2Ti0.8)O-3 layer, show not only multiple nonvolatile levels but also sign reversibility, enabling the representation of a signed weight in a single device and hence reducing the hardware overhead for network construction. With multiple FE-PSs wired together, the FE-PS-NET acts on its own as an artificial neural network. In situ multiply-accumulate operation between an input image and a stored photoresponsivity matrix is demonstrated in the FE-PS-NET. Moreover, the FE-PS-NET is faultlessly competent for real-time image processing functionalities, including binary classification between 'X' and 'T' patterns with 100% accuracy and edge detection for an arrow sign with an F-Measure of 1 (under 365 nm ultraviolet light). This study highlights the great potential of ferroelectric photovoltaics as the hardware basis of real-time machine vision.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[2]   In-sensor computing for machine vision [J].
Chai, Yang .
NATURE, 2020, 579 (7797) :32-33
[3]   Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision [J].
Chen, Qilai ;
Zhang, Ying ;
Liu, Shuzhi ;
Han, Tingting ;
Chen, Xinhui ;
Xu, Yanqing ;
Meng, Ziqi ;
Zhang, Guanglei ;
Zheng, Xuejun ;
Zhao, Jinjin ;
Cao, Guozhong ;
Liu, Gang .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (09)
[4]   Highly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing [J].
Cheng, Shengliang ;
Fan, Zhen ;
Rao, Jingjing ;
Hong, Lanqing ;
Huang, Qicheng ;
Tao, Ruiqiang ;
Hou, Zhipeng ;
Qin, Minghui ;
Zeng, Min ;
Lu, Xubing ;
Zhou, Guofu ;
Yuan, Guoliang ;
Gao, Xingsen ;
Liu, Jun-Ming .
ISCIENCE, 2020, 23 (12)
[5]   Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 [J].
Choi, T. ;
Lee, S. ;
Choi, Y. J. ;
Kiryukhin, V. ;
Cheong, S. -W. .
SCIENCE, 2009, 324 (5923) :63-66
[6]   Large electroresistance and tunable photovoltaic properties of ferroelectric nanoscale capacitors based on ultrathin super-tetragonal BiFeO3 films [J].
Fan, Hua ;
Fan, Zhen ;
Li, Peilian ;
Zhang, Fengyuan ;
Tian, Guo ;
Yao, Junxiang ;
Li, Zhongwen ;
Song, Xiao ;
Chen, Deyang ;
Han, Bing ;
Zeng, Min ;
Wu, Sujuan ;
Zhang, Zhang ;
Qin, Minghui ;
Lu, Xubing ;
Gao, Jinwei ;
Lu, Zengxing ;
Zhang, Zhi ;
Dai, Jiyan ;
Gao, Xingsen ;
Liu, Jun-Ming .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (13) :3323-3329
[7]   Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films [J].
Fang, Liang ;
You, Lu ;
Zhou, Yang ;
Ren, Peng ;
Lim, Zhi Shiuh ;
Wang, Junling .
APPLIED PHYSICS LETTERS, 2014, 104 (14)
[8]   A Ferroelectric Ultraviolet Detector With Constructive Photovoltaic Outputs [J].
Gan, Bee Keen ;
Yao, Kui ;
Lai, Szu Cheng ;
Goh, Phoi Chin ;
Chen, Yi Fan .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (05) :665-667
[9]   Transparent, Flexible, Fatigue-Free, Optical-Read, and Nonvolatile Ferroelectric Memories [J].
Gao, Huan ;
Yang, Yuxi ;
Wang, Yaojin ;
Chen, Lang ;
Wang, Junling ;
Yuan, Guoliang ;
Liu, Jun-Ming .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) :35169-35176
[10]   Non-volatile memory based on the ferroelectric photovoltaic effect [J].
Guo, Rui ;
You, Lu ;
Zhou, Yang ;
Lim, Zhi Shiuh ;
Zou, Xi ;
Chen, Lang ;
Ramesh, R. ;
Wang, Junling .
NATURE COMMUNICATIONS, 2013, 4