Interface solitons in locally linked two-dimensional lattices

被引:8
作者
Petrovic, M. D. [1 ]
Gligoric, G. [1 ]
Maluckov, A. [2 ]
Hadzievski, Lj. [1 ]
Malomed, B. A. [3 ]
机构
[1] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade 11001, Serbia
[2] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
[3] Tel Aviv Univ, Dept Phys Elect, Sch Elect Engn, Fac Engn, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 02期
关键词
WAVE-GUIDE ARRAYS; NONLINEAR SCHRODINGER-EQUATION; STATIONARY LOCALIZED STATES; SURFACE SOLITONS; FIBER COUPLERS; DISCRETE SOLITONS; PHOTONIC LATTICES; SYMMETRY-BREAKING; SOLITARY WAVES; MODES;
D O I
10.1103/PhysRevE.84.026602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Existence, stability, and dynamics of soliton complexes, centered at the site of a single transverse link connecting two parallel two-dimensional (2D) lattices, are investigated. The system with the onsite cubic self-focusing nonlinearity is modeled by the pair of discrete nonlinear Schrodinger equations linearly coupled at the single site. Symmetric, antisymmetric, and asymmetric complexes are constructed by means of the variational approximation (VA) and numerical methods. The VA demonstrates that the antisymmetric soliton complexes exist in the entire parameter space, while the symmetric and asymmetric modes can be found below a critical value of the coupling parameter. Numerical results confirm these predictions. The symmetric complexes are destabilized via a supercritical symmetry-breaking pitchfork bifurcation, which gives rise to stable asymmetric modes. The antisymmetric complexes are subject to oscillatory and exponentially instabilities in narrow parametric regions. In bistability areas, stable antisymmetric solitons coexist with either symmetric or asymmetric ones.
引用
收藏
页数:8
相关论文
共 56 条
[1]   NOVEL SOLITON STATES AND BIFURCATION PHENOMENA IN NONLINEAR FIBER COUPLERS [J].
AKHMEDIEV, N ;
ANKIEWICZ, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (16) :2395-2398
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   Spontaneous symmetry breaking in Schrodinger lattices with two nonlinear sites [J].
Brazhnyi, Valeriy A. ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2011, 83 (05)
[4]   Localization and delocalization of two-dimensional discrete solitons pinned to linear and nonlinear defects [J].
Brazhnyi, Valeriy A. ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2011, 83 (01)
[5]   Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects [J].
Bulgakov, Evgeny ;
Pichugin, Konstantin ;
Sadreev, Almas .
PHYSICAL REVIEW B, 2011, 83 (04)
[6]   SOLITON-DEFECT COLLISIONS IN THE NONLINEAR SCHRODINGER-EQUATION [J].
CAO, XD ;
MALOMED, BA .
PHYSICS LETTERS A, 1995, 206 (3-4) :177-182
[7]   SOLITON SWITCHING AND PROPAGATION IN NONLINEAR FIBER COUPLERS - ANALYTICAL RESULTS [J].
CHU, PL ;
MALOMED, BA ;
PENG, GD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (08) :1379-1385
[8]   SYMMETRY BREAKING FOR A NONLINEAR SCHRODINGER EQUATION [J].
DAVIES, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 64 (03) :191-210
[9]   THE DISCRETE SELF-TRAPPING EQUATION [J].
EILBECK, JC ;
LOMDAHL, PS ;
SCOTT, AC .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 16 (03) :318-338
[10]   Defect modes in one-dimensional photonic lattices [J].
Fedele, F ;
Yang, JK ;
Chen, ZG .
OPTICS LETTERS, 2005, 30 (12) :1506-1508