Lyapunov exponent in the Vicsek model

被引:4
|
作者
Miranda-Filho, L. H. [1 ]
Sobral, T. A. [2 ]
de Souza, A. J. F. [1 ]
Elskens, Y. [3 ]
Romaguera, Antonio R. de C. [1 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, Rua Manoel Medeiros S-N, BR-52171900 Recife, PE, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Rio Grande Norte, RN 288 S-N, BR-59300000 Nova Caico, Caico, Brazil
[3] Aix Marseille Univ, CNRS, UMR 7345, Phys Interact Ion & Mol, Campus St Jerome,Case 322,Av Esc Normandie Niemen, FR-13397 Marseille 20, France
关键词
COLLECTIVE MOTION;
D O I
10.1103/PhysRevE.105.014213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surprisingly, there is no direct measure of the chaotic behavior of such systems. Here we discuss the dynamical phase transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically computed by following the dynamical evolution in tangent space for up to two million SPPs. As discontinuities in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We find a chaotic regime for the collective behavior of the SPPs based on the LLE. The dependence of LLE with the applied noise, used as a control parameter, changes sensibly in the vicinity of the well-known transition points of the Vicsek model.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Lyapunov exponent of a stochastic SIRS model
    Chen, Guoting
    Li, Tiecheng
    Liu, Changjian
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (1-2) : 33 - 35
  • [2] LYAPUNOV-EXPONENT SPECTRA FOR THE LORENZ MODEL
    FROYLAND, J
    ALFSEN, KH
    PHYSICAL REVIEW A, 1984, 29 (05): : 2928 - 2931
  • [3] Lyapunov exponent for the parabolic Anderson model in Rd
    Cranston, M
    Mountford, TS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) : 78 - 119
  • [4] Lyapunov exponent for the parabolic anderson model with levy noise
    Cranston, M
    Mountford, TS
    Shiga, T
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (03) : 321 - 355
  • [5] Local Lyapunov exponent for the Bak-Sneppen model
    Ma, K
    Yang, CB
    Cai, X
    CHINESE PHYSICS LETTERS, 2003, 20 (12) : 2118 - 2121
  • [6] LYAPUNOV EXPONENT MODEL OF LONG-TERM FORECAST
    LIN, ZS
    LIU, J
    HUA, XH
    ZHANG, FQ
    CHAOS SOLITONS & FRACTALS, 1993, 3 (04) : 431 - 437
  • [7] Bound on Lyapunov exponent in c=1 matrix model
    Morita, Takeshi
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (04):
  • [8] Lyapunov exponent in two-leg ladder model
    Datta, P. K.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (18) : 3890 - 3894
  • [9] Lyapunov exponent and criticality in the Hamiltonian mean field model
    Miranda Filho, L. H.
    Amato, M. A.
    Rocha Filho, T. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [10] Convexity of the Lyapunov exponent
    Volkmer, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) : 35 - 48