Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936

被引:56
作者
Ballerini, Lucia [1 ,2 ,3 ,4 ]
Booth, Tom [4 ,5 ]
Hernandez, Maria del C. Valdes [1 ,2 ,3 ,4 ,6 ]
Wiseman, Stewart [1 ,2 ,3 ]
Lovreglio, Ruggiero [7 ]
Maniega, Susana Munoz [1 ,2 ,3 ,4 ]
Morris, Zoe [1 ,2 ]
Pattie, Alison [5 ]
Corley, Janie [5 ]
Gow, Alan [4 ,8 ]
Bastin, Mark E. [1 ,2 ,4 ]
Deary, Ian J. [4 ,5 ]
Wardlaw, Joanna [1 ,2 ,3 ,4 ]
机构
[1] Univ Edinburgh, Ctr Clin Brain Sci, Div Neuroimaging Sci, 49 Little France Crescent,Chancellors Bldg FU 427, Edinburgh EH16 4SB, Midlothian, Scotland
[2] Univ Edinburgh, Edinburgh Imaging, Edinburgh, Midlothian, Scotland
[3] Univ Edinburgh, UK Dementia Res Inst, Edinburgh, Midlothian, Scotland
[4] Univ Edinburgh, Ctr Cognit Ageing & Cognit Epidemiol, Edinburgh, Midlothian, Scotland
[5] Univ Edinburgh, Dept Psychol, Edinburgh, Midlothian, Scotland
[6] Univ Edinburgh, Row Fogo Ctr Res Ageing & Brain, Edinburgh, Midlothian, Scotland
[7] Massey Univ, Sch Built Environm, Auckland, New Zealand
[8] Heriot Watt Univ, Dept Psychol, Edinburgh, Midlothian, Scotland
基金
欧盟地平线“2020”; 英国医学研究理事会; 英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
MRI; Ageing; Perivascular spaces; White matter hyperintensities; SMALL VESSEL DISEASE; VIRCHOW-ROBIN SPACES; MRI MARKERS; OLD-AGE; SEGMENTATION; REGRESSION; COGNITION; STROKE; MODEL;
D O I
10.1016/j.nicl.2019.102120
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background and Purpose: Perivascular Spaces (PVS), also known as Virchow-Robin spaces, seen on structural brain MRI, are important fluid drainage conduits and are associated with small vessel disease (SVD). Computational quantification of visible PVS may enable efficient analyses in large datasets and increase sensitivity to detect associations with brain disorders. We assessed the associations of computationally-derived PVS parameters with vascular factors and white matter hyperintensities (WMH), a marker of SVD. Participants: Community dwelling individuals (n = 700) from the Lothian Birth Cohort 1936 who had multimodal brain MRI at age 72.6 years (SD = 0.7). Methods: We assessed PVS computationally in the centrum semiovale and deep corona radiata on T2-weighted images. The computationally calculated measures were the total PVS volume and count per subject, and the mean individual PVS length, width and size, per subject. We assessed WMH by volume and visual Fazekas scores. We compared PVS visual rating to PVS computational metrics, and tested associations between each PVS measure and vascular risk factors (hypertension, diabetes, cholesterol), vascular history (cardiovascular disease and stroke), and WMH burden, using generalized linear models, which we compared using coefficients, confidence intervals and model fit. Results: In 533 subjects, the computational PVS measures correlated positively with visual PVS ratings (PVS count r = 0.59; PVS volume r = 0.61; PVS mean length r = 0.55; PVS mean width r = 0.52; PVS mean size r = 0.47). PVS size and width were associated with hypertension (OR 1.22, 95% CI [1.03 to 1.46] and 1.20, 95% CI [1.01 to 1.43], respectively), and stroke (OR 1.34, 95% CI [1.08 to 1.65] and 1.36, 95% CI [1.08 to 1.71], respectively). We found no association between other PVS measures and diabetes, hypercholesterolemia or cardiovascular disease history. Computational PVS volume, length, width and size were more strongly associated with WMH (PVS mean size versus WMH Fazekas score beta = 0.66, 95% CI [0.59 to 0.74] and versus WMH volume beta = 0.43, 95% CI [0.38 to 0.48]) than computational PVS count (WMH Fazekas score beta = 0.21, 95% CI [0.11 to 0.3]; WMH volume beta = 0.14, 95% CI [0.09 to 0.19]) or visual score. Individual PVS size showed the strongest association with WMH. Conclusions: Computational measures reflecting individual PVS size, length and width were more strongly associated with WMH, stroke and hypertension than computational count or visual PVS score. Multidimensional computational PVS metrics may increase sensitivity to detect associations of PVS with risk exposures, brain lesions and neurological disease, provide greater anatomic detail and accelerate understanding of disorders of brain fluid and waste clearance.
引用
收藏
页数:11
相关论文
共 34 条
[1]  
[Anonymous], 2002, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, DOI DOI 10.1007/B97636
[2]   Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack [J].
Arba, Francesco ;
Quinn, Terence J. ;
Hankey, Graeme J. ;
Lees, Kennedy R. ;
Wardlaw, Joanna M. ;
Ali, Myzoon ;
Inzitari, Domenico .
INTERNATIONAL JOURNAL OF STROKE, 2018, 13 (01) :47-56
[3]   Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities [J].
Aribisala, Benjamin S. ;
Wiseman, Stewart ;
Morris, Zoe ;
Valdes-Hernandez, Maria C. ;
Royle, Natalie A. ;
Munoz Maniega, Susana ;
Gow, Alan J. ;
Corley, Janie ;
Bastin, Mark E. ;
Starr, John ;
Deary, Ian J. ;
Wardlaw, Joanna M. .
STROKE, 2014, 45 (02) :605-607
[4]   Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering [J].
Ballerini, Lucia ;
Lovreglio, Ruggiero ;
Hernandez, Maria del C. Valdes ;
Ramirez, Joel ;
MacIntosh, Bradley J. ;
Black, Sandra E. ;
Wardlaw, Joanna M. .
SCIENTIFIC REPORTS, 2018, 8
[5]   Application of the ordered logit model to optimising Frangi filter parameters for segmentation of perivascular spaces [J].
Ballerini, Lucia ;
Lovreglio, Ruggiero ;
Hernandez, Maria del C. Valdes ;
Gonzalez-Castro, Victor ;
Maniega, Susana Munoz ;
Pellegrini, Enrico ;
Bastin, Mark E. ;
Deary, Ian J. ;
Wardlaw, Joanna M. .
20TH CONFERENCE ON MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2016), 2016, 90 :61-67
[6]   MR Imaging-based Multimodal Autoidentification of Perivascular Spaces (mMAPS): Automated Morphologic Segmentation of Enlarged Perivascular Spaces at Clinical Field Strength [J].
Boespflug, Erin L. ;
Schwartz, Daniel L. ;
Lahna, David ;
Pollock, Jeffrey ;
Iliff, Jeffrey J. ;
Kaye, Jeffrey A. ;
Rooney, William ;
Silbert, Lisa C. .
RADIOLOGY, 2018, 286 (02) :632-642
[7]   Understanding the role of the perivascular space in cerebral small vessel disease [J].
Brown, Rosalind ;
Benveniste, Helene ;
Black, Sandra E. ;
Charpak, Serge ;
Dichgans, Martin ;
Joutel, Anne ;
Nedergaard, Maiken ;
Smith, Kenneth J. ;
Zlokovic, Berislav V. ;
Wardlaw, Joanna M. .
CARDIOVASCULAR RESEARCH, 2018, 114 (11) :1462-1473
[8]   The Lothian Birth Cohort 1936: A study to examine influences on cognitive ageing from age 11 to age 70 and beyond [J].
Deary I.J. ;
Gow A.J. ;
Taylor M.D. ;
Corley J. ;
Brett C. ;
Wilson V. ;
Campbell H. ;
Whalley L.J. ;
Visscher P.M. ;
Porteous D.J. ;
Starr J.M. .
BMC Geriatrics, 7 (1)
[9]   Clinical Significance of Magnetic Resonance Imaging Markers of Vascular Brain Injury A Systematic Review and Meta-analysis [J].
Debette, Stephanie ;
Schilling, Sabrina ;
Duperron, Marie-Gabrielle ;
Larsson, Susanna C. ;
Markus, Hugh S. .
JAMA NEUROLOGY, 2019, 76 (01) :81-94
[10]   Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease [J].
Doubal, Fergus N. ;
MacLullich, Alasdair M. J. ;
Ferguson, Karen J. ;
Dennis, Martin S. ;
Wardlaw, Joanna M. .
STROKE, 2010, 41 (03) :450-454