Piezoelectric and polarized enhancement by hydrofluorination of penta-graphene

被引:32
作者
Jia, Hao-Jun [1 ,2 ]
Mu, Hui-Min [1 ]
Li, Jin-Peng [1 ]
Zhao, Yan-Zhen [1 ,2 ]
Wu, Yu-Xuan [1 ,2 ]
Wang, Xiao-Chun [1 ]
机构
[1] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Coll Phys, Changchun 130012, Jilin, Peoples R China
关键词
HYDROGEN;
D O I
10.1039/c8cp04010a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Motivated by the challenges in the harnessing of energy and the continuing trend of miniaturizing devices, an exhaustive evaluation of the electronic, mechanical and piezoelectric properties of surface modified penta-graphene (PG), including fluorinated PG (F-PG-F), hydrofluorinated PG (H-PG-F) and hydrogenated PG (H-PG-H), was carried out via a first-principles approach based on density functional theory. We first predicted the H-PG-F system and calculated its phonon dispersion and magnetic properties. All three systems were found to exhibit an e(31) piezoelectric effect, and the e(31) (96.88 pC m(-1)) effect of H-PG-F was found to be much greater than that of the other two systems. So, it could be concluded that hydrofluorination can significantly enhance the piezoelectric properties of PG. The binding energy and formation energy of the H-PG-F system were found to be the lowest among the three surface modified PG systems, showing that the H-PG-F system is the most energetically favorable state. The e(31) piezoelectricity can be potentially engineered into a PG monolayer by surface modification, providing an avenue for monolithic integration of electronic and electromechanical devices with a PG monolayer for use in mechanical stress-sensors, nano-sized actuators and energy harvesting systems. The H-PG-F system stands out in terms of its combination of a larger piezoelectric coefficient (e(31) = 96.88 pC m(-1)), negative Poisson's ratio and low formation energy (-3.37 eV) and is recommended for experimental exploration.
引用
收藏
页码:26288 / 26296
页数:9
相关论文
共 48 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials [J].
Blonsky, Michael N. ;
Zhuang, Houlong L. ;
Singh, Arunima K. ;
Hennig, Richard G. .
ACS NANO, 2015, 9 (10) :9885-9891
[3]   Enhanced thermoelectric properties of penta-graphene by strain effects process [J].
Chen, Chun-Ping ;
Liu, Chang ;
Liu, Lin-Lin ;
Zhao, Lu-Si ;
Wang, Xiao-Chun .
MATERIALS RESEARCH EXPRESS, 2017, 4 (10)
[4]   Superconductivity in Li-intercalated bilayer arsenene and hole-doped monolayer arsenene: a first-principles prediction [J].
Chen, Jianyong ;
Ge, Yanfeng ;
Zhou, Wenzhe ;
Peng, Mengqi ;
Pan, Jiangling ;
Ouyang, Fangping .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (24)
[5]   Intrinsic Piezoelectricity in Two-Dimensional Materials [J].
Duerloo, Karel-Alexander N. ;
Ong, Mitchell T. ;
Reed, Evan J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (19) :2871-2876
[6]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[7]   Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS [J].
Fei, Ruixiang ;
Li, Wenbin ;
Li, Ju ;
Yang, Li .
APPLIED PHYSICS LETTERS, 2015, 107 (17)
[8]   Prediction of phonon-mediated superconductivity in borophene [J].
Gao, Miao ;
Li, Qi-Zhi ;
Yan, Xun-Wang ;
Wang, Jun .
PHYSICAL REVIEW B, 2017, 95 (02)
[9]   Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure [J].
Gomes, Lidia C. ;
Carvalho, A. .
PHYSICAL REVIEW B, 2015, 92 (08)
[10]   A fast and robust algorithm for Bader decomposition of charge density [J].
Henkelman, Graeme ;
Arnaldsson, Andri ;
Jonsson, Hannes .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 36 (03) :354-360