On Approximate Efficiency for Nonsmooth Robust Vector Optimization Problems

被引:8
作者
Antczak, Tadeusz [1 ]
Pandey, Yogendra [2 ]
Singh, Vinay [3 ]
Mishra, Shashi Kant [4 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90238 Lodz, Poland
[2] Satish Chandra Coll, Dept Math, Ballia 277001, India
[3] Natl Inst Technol, Dept Math, Aizawl 796012, Mizoram, India
[4] Banaras Hindu Univ, Dept Math, Varanasi 221005, Uttar Pradesh, India
关键词
Robust optimization approach; robust multiobjective optimization; epsilon-efficient solution; epsilon-optimality conditions; scalarization; MULTIOBJECTIVE OPTIMIZATION; OPTIMALITY; DUALITY;
D O I
10.1007/s10473-020-0320-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we use the robust optimization approach (also called the worst-case approach) for finding e-efficient solutions of the robust multiobjective optimization problem defined as a robust (worst-case) counterpart for the considered nonsmooth multiobjective programming problem with the uncertainty in both the objective and constraint functions. Namely, we establish both necessary and sufficient optimality conditions for a feasible solution to be an e-efficient solution (an approximate efficient solution) of the considered robust multiobjective optimization problem. We also use a scalarizing method in proving these optimality conditions.
引用
收藏
页码:887 / 902
页数:16
相关论文
共 40 条
[1]  
[Anonymous], 2007, Robust Portfolio Optimization and Management
[2]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[3]   Robust optimization - methodology and applications [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2002, 92 (03) :453-480
[4]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[5]   Selected topics in robust convex optimization [J].
Ben-Tal, Aharon ;
Nemirovski, Arkadi .
MATHEMATICAL PROGRAMMING, 2008, 112 (01) :125-158
[6]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[7]   Robust linear optimization under general norms [J].
Bertsimas, D ;
Pachamanova, D ;
Sim, M .
OPERATIONS RESEARCH LETTERS, 2004, 32 (06) :510-516
[8]   Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization [J].
Bokrantz, Rasmus ;
Fredriksson, Albin .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 262 (02) :682-692
[9]   Including robustness in multi-criteria optimization for intensity-modulated proton therapy [J].
Chen, Wei ;
Unkelbach, Jan ;
Trofimov, Alexei ;
Madden, Thomas ;
Kooy, Hanne ;
Bortfeld, Thomas ;
Craft, David .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (03) :591-608
[10]   Robust multiobjective optimization with application to Internet routing [J].
Doolittle, Erin K. ;
Kerivin, Herve L. M. ;
Wiecek, Margaret M. .
ANNALS OF OPERATIONS RESEARCH, 2018, 271 (02) :487-525