Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds

被引:44
作者
Zhang, Z. [1 ]
Ghassemi, A. [1 ]
机构
[1] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA
关键词
virtual multidimensional internal bonds; hydraulic fracture; fracture propagation; NUMERICAL-SIMULATION; NUMEROUS MICROCRACKS; CRACK-PROPAGATION; COALESCENCE; CONTINUUM; GROWTH;
D O I
10.1002/nag.905
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
A virtual multidimensional internal bond (VMIB) model developed to simulate the propagation of hydraulic fractures using the finite-element method is formulated within the framework of the virtual internal bond theory (VIB) that considers a solid as randomized material particles in the micro scale, and derives the macro constitutive relation from the cohesive law between the material particles with an implicit fracture criterion. Hydraulic pressure is applied using a new scheme that enables simulation of hydraulically driven cracks. When the model is applied to study hydraulic fracture propagation in the presence of a natural fracture, the results show the method to be very effective. It shows that although the in situ stress ratio is the dominant factor governing the propagation direction, a natural fault can also strongly influence the hydraulic fracture behavior. This influence is conditioned by the shear stiffness of the fault and the distance to the original hydraulic fracture. The model results show that when the fault is strong in shear, its impact on hydraulic fracture trajectory is weak and the hydraulic fracture will likely penetrate the fault. For a weak fault, however, the fracture tends to be arrested at the natural fault. The distance between the fault and the hydraulic fracture is also important; the fault influence increases with decreasing distance. The VMIB does not require selection of a fracture criterion and remeshing when the fracture propagates. Therefore, it is advantageous for modeling fracture initiation and propagation in naturally fractured rock. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:480 / 495
页数:16
相关论文
共 24 条
[1]  
[Anonymous], SOIL ROCK AM S BOST
[2]  
[Anonymous], P UNC GAS TECHN S SO
[3]   Numerical modeling of fracture coalescence in a model rock material [J].
Bobet, A ;
Einstein, HH .
INTERNATIONAL JOURNAL OF FRACTURE, 1998, 92 (03) :221-252
[4]   A NUMERICAL PROCEDURE FOR SIMULATION OF HYDRAULICALLY-DRIVEN FRACTURE PROPAGATION IN POROELASTIC MEDIA [J].
BOONE, TJ ;
INGRAFFEA, AR .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1990, 14 (01) :27-+
[5]   Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening [J].
Cooke, ML ;
Underwood, CA .
JOURNAL OF STRUCTURAL GEOLOGY, 2001, 23 (2-3) :223-238
[6]  
CURRAN JH, 1987, P 6 C ISRM MONTR, V1, P73
[7]   Extended structural criterion for numerical simulation of crack propagation and coalescence under compressive loads [J].
Dobroskok, A ;
Ghassemi, A ;
Linkov, A .
INTERNATIONAL JOURNAL OF FRACTURE, 2005, 133 (03) :223-246
[8]  
DOBROSKOK AA, 2004, T GEOTHERMAL RESOURC, V28, P285
[9]   A simple method for calculating interaction of numerous microcracks and its applications [J].
Feng, XQ ;
Li, HY ;
Yu, SW .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (02) :447-464
[10]   Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds [J].
Gao, HJ ;
Klein, P .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (02) :187-218