Coronene-Based Graphene Nanoribbons Insulated by Boron Nitride Nanotubes: Electronic Properties of the Hybrid Structure

被引:3
作者
Gracia-Espino, Eduardo [1 ]
Barzegar, Hamid Reza [1 ,2 ]
Zettl, Alex [2 ,3 ,4 ,5 ]
机构
[1] Umea Univ, Dept Phys, S-90187 Umea, Sweden
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Kavli Energy Nano Sci Inst, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
来源
ACS OMEGA | 2018年 / 3卷 / 10期
基金
瑞典研究理事会;
关键词
CARBON NANOTUBES; NANOPARTICLES; TWIST; SIZE;
D O I
10.1021/acsomega.8b01617
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a theoretical study on the formation of graphene nanoribbons-via polymerization of coronene molecules-inside the inner cavity of boron nitride nanotubes. We examine the electronic property of the hybrid system, and we show that the boron nitride nanotube does not significantly alter the electronic properties of the encapsulated graphene nanoribbon. Motivated by previous experimental works, we examine graphene nanoribbons with two different widths and investigate probable scenarios for defect formation and/or twisting of the resulting graphene nanoribbons and their effect on the electronic properties of the hybrid system.
引用
收藏
页码:12930 / 12935
页数:6
相关论文
共 45 条
  • [1] GRAPHENE NANORIBBONS Twisted within nanotubes
    Banhart, Florian
    [J]. NATURE MATERIALS, 2011, 10 (09) : 651 - 652
  • [2] Spontaneous twisting of a collapsed carbon nanotube
    Barzegar, Hamid Reza
    Yan, Aiming
    Coh, Sinisa
    Gracia-Espino, Eduardo
    Ojeda-Aristizabal, Claudia
    Dunn, Gabriel
    Cohen, Marvin L.
    Louie, Steven G.
    Wagberg, Thomas
    Zettl, Alex
    [J]. NANO RESEARCH, 2017, 10 (06) : 1942 - 1949
  • [3] Synthesis of graphene nanoribbons inside boron nitride nanotubes
    Barzegar, Hamid Reza
    Thang Pham
    Talyzin, Alexandr V.
    Zettl, Alex
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (12): : 2377 - 2379
  • [4] Bets KV, 2009, NANO RES, V2, P161, DOI [10.1007/s12274-009-9015-x, 10.1007/S12274-009-9015-X]
  • [5] Density-functional method for nonequilibrium electron transport -: art. no. 165401
    Brandbyge, M
    Mozos, JL
    Ordejón, P
    Taylor, J
    Stokbro, K
    [J]. PHYSICAL REVIEW B, 2002, 65 (16) : 1654011 - 16540117
  • [6] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2010, 466 (7305) : 470 - 473
  • [7] Size, Structure, and Helical Twist of Graphene Nanoribbons Controlled by Confinement in Carbon Nanotubes
    Chamberlain, Thomas W.
    Biskupek, Johannes
    Rance, Graham A.
    Chuvilin, Andrey
    Alexander, Thomas J.
    Bichoutskaia, Elena
    Kaiser, Ute
    Khlobystov, Andrei N.
    [J]. ACS NANO, 2012, 6 (05) : 3943 - 3953
  • [8] Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
  • [9] Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
    Chen, Yen-Chia
    de Oteyza, Dimas G.
    Pedramrazi, Zahra
    Chen, Chen
    Fischer, Felix R.
    Crommie, Michael F.
    [J]. ACS NANO, 2013, 7 (07) : 6123 - 6128
  • [10] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232