Polymer Zwitterion-Based Artificial Interphase Layers for Stable Lithium Metal Anodes

被引:33
作者
Jin, Tong [1 ]
Liu, Ming [2 ]
Su, Kai [1 ]
Lu, Yue [1 ]
Cheng, Guang [1 ]
Liu, Yao [2 ]
Li, Nian Wu [1 ]
Yu, Le [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
polymer zwitterion; artificial interphase layers; interfacial engineering; lithium dendrite; lithium metal anodes; SOLID-ELECTROLYTE INTERPHASE; ION-TRANSPORT; BATTERIES; PROGRESS;
D O I
10.1021/acsami.1c19479
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium (Li) metal batteries are promising future rechargeable batteries with high-energy density as the Li metal anode (LMA) possesses a high specific capacity and the lowest potential. However, the commercial application of the LMA has been hindered by a low Coulombic efficiency and dendrite growth, which are related to the unstable interphase with poor Li+ ion transport. Herein, we report novel polymer zwitterion-based artificial interphase layers (AILs) with improved Li+ ion transport and high stability for long-life LMAs. Benefitting from the unique zwitterion effect within the polymer zwitterion-based AILs, a high Li+ ion transference number (0.81) and a good ionic conductivity (0.75 x 10(-4) S cm(-1)) can be realized simultaneously at the interface. By regulating the weight ratio of the sulfonate group and the phosphate group in polymer zwitterion-based AILs, the modified LMA enables long-term Li plating/stripping for 1400 h at 1 mA cm(-2) and stable cycling in a full cell. This interfacial engineering concept could shed light on the development of safe LMAs.
引用
收藏
页码:57489 / 57496
页数:8
相关论文
共 47 条
[1]   Polar polymer-solvent interaction derived favorable interphase for stable lithium metal batteries [J].
Bae, Jiwoong ;
Qian, Yumin ;
Li, Yutao ;
Zhou, Xingyi ;
Goodenough, John B. ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) :3319-3327
[2]  
Busche MR, 2016, NAT CHEM, V8, P426, DOI [10.1038/NCHEM.2470, 10.1038/nchem.2470]
[3]  
Chen C., ADV MATER, V33
[4]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[5]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562
[6]   Decoupling the Ionic Conductivity and Elastic Modulus of Gel Electrolytes: Fully Zwitterionic Copolymer Scaffolds in Lithium Salt/Ionic Liquid Solutions [J].
D'Angelo, Anthony J. ;
Panzer, Matthew J. .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[7]   A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers [J].
Fang, Yongjin ;
Zhang, Song Lin ;
Wu, Zhi-Peng ;
Luan, Deyan ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2021, 7 (21)
[8]   Artificial Interphase Layers for Lithium Metal Anode [J].
Guan, Jun ;
Li, Nianwu ;
Yu, Le .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (02) :1-14
[9]   A Polymer-Reinforced SEI Layer Induced by a Cyclic Carbonate-Based Polymer Electrolyte Boosting 4.45 V LiCoO2/Li Metal Batteries [J].
Hu, Rongxiang ;
Qiu, Huayu ;
Zhang, Huanrui ;
Wang, Peng ;
Du, Xiaofan ;
Ma, Jun ;
Wu, Tianyuan ;
Lu, Chenglong ;
Zhou, Xinhong ;
Cui, Guanglei .
SMALL, 2020, 16 (13)
[10]   Facile Generation of Polymer-Alloy Hybrid Layers for Dendrite-Free Lithium-Metal Anodes with Improved Moisture Stability [J].
Jiang, Zhipeng ;
Jin, Liu ;
Han, Zhilong ;
Hu, Wei ;
Zeng, Ziqi ;
Sun, Yulong ;
Xie, Jia .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) :11374-11378