On the dynamical reduction of the Vlasov equation

被引:22
作者
Brizard, Alain J. [1 ]
机构
[1] St Michaels Coll, Dept Chem & Phys, Colchester, VT 05439 USA
基金
美国国家科学基金会;
关键词
Vlasov equation; Lie-transform perturbation theory;
D O I
10.1016/j.cnsns.2007.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The elimination of a fast-time scale from the Vlasov equation by Lie-transform methods is an important step in deriving a reduced Vlasov equation such as the drift-kinetic Vlasov equation or the gyrokinetic Vlasov equation. It is shown here that this dynamical reduction also leads to the introduction of polarization and magnetization effects in the reduced Maxwell equations, which ensure that the reduced Vlasov-Maxwell equations possess an exact energy-momentum conservation law. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 22 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
[Anonymous], CONT MATH
[3]  
[Anonymous], 1987, THESIS U CALIFORNIA
[4]  
Boghosian B. M., 1987, ARXIVPHYSICS0307148
[5]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[6]   NONLINEAR GYROKINETIC VLASOV EQUATION FOR TOROIDALLY ROTATING AXISYMMETRICAL TOKAMAKS [J].
BRIZARD, AJ .
PHYSICS OF PLASMAS, 1995, 2 (02) :459-471
[7]   New variational principle for the Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5768-5771
[8]   A geometric view of Hamiltonian perturbation theory [J].
Brizard, AJ .
PHYSICS LETTERS A, 2001, 291 (2-3) :146-149
[9]   PONDEROMOTIVE EFFECTS IN COLLISIONLESS PLASMA - A LIE TRANSFORM APPROACH [J].
CARY, JR ;
KAUFMAN, AN .
PHYSICS OF FLUIDS, 1981, 24 (07) :1238-1250
[10]   ADIABATIC INVARIANTS AND EQUILIBRIUM OF MAGNETICALLY TRAPPED PARTICLES [J].
HASTIE, RJ ;
TAYLOR, JB ;
HAAS, FA .
ANNALS OF PHYSICS, 1967, 41 (02) :302-&