On stability of tangent bundle of toric varieties

被引:0
作者
Biswas, Indranil [1 ]
Dey, Arijit [2 ]
Genc, Ozhan [3 ,4 ]
Poddar, Mainak [5 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[3] Middle East Tech Univ, Northern Cyprus Campus,Mersin 10, Guzelyurt, Turkey
[4] Jagiellonian Univ, Dept Math & Comp Sci, Ul Prof Stanislawa,Lojasiewicza 6, PL-30348 Krakow, Poland
[5] Indian Inst Sci Educ & Res, Math Dept, Pune 411008, Maharashtra, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2021年 / 131卷 / 02期
关键词
Semistable sheaf; tangent bundle; toric variety; Hirzebruch surface; Fano manifold; SHEAVES;
D O I
10.1007/s12044-021-00623-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a nonsingular complex projective toric variety. We address the question of semi-stability as well as stability for the tangent bundle TX. In particular, a complete answer is given when X is a Fano toric variety of dimension four with Picard number at most two, complementing the earlier work of Nakagawa (Tohoku. Math. J.45 (1993) 297-310; 46 (1994) 125-133). We also give an infinite set of examples of Fano toric varieties for which TX is unstable; the dimensions of this collection of varieties are unbounded. Our method is based on the equivariant approach initiated by Klyachko (Izv. Akad. Nauk. SSSR Ser. Mat.53 (1989) 1001-1039, 1135) and developed further by Perling (Math. Nachr. 263/264 (2004) 181-197) and Kool (Moduli spaces of sheaves on toric varieties, Ph.D. thesis (2010) (University of Oxford); Adv. Math. 227 (2011) 1700-1755).
引用
收藏
页数:21
相关论文
共 22 条
[1]  
[Anonymous], 1987, Publications of the Mathematical Society of Japan
[2]  
Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
[3]  
AUBIN T, 1978, B SCI MATH, V102, P63
[4]  
Batyrev V.V., 1994, J. Alg. Geom., V3, P493
[5]  
Batyrev V. V., 1999, Journal of Mathematical Sciences, V94, P1021
[6]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[7]   On the equivariant reduction of structure group of a principal bundle to a Levi subgroup [J].
Biswas, I ;
Parameswaran, AJ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (01) :54-70
[8]   Stability and holomorphic connections on vector bundles over LVMB manifolds [J].
Biswas, Indranil ;
Dumitrescu, Sorin ;
Meersseman, Laurent .
COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) :151-157
[9]   STABILITY OF DELPEZZO-SURFACE TANGENT-BUNDLES [J].
FAHLAOUI, R .
MATHEMATISCHE ANNALEN, 1989, 283 (01) :171-176
[10]  
Fulton W., 1993, Annals of mathematics studies, DOI DOI 10.1515/9781400882526