Topological Index for Periodically Driven Time-Reversal Invariant 2D Systems

被引:145
作者
Carpentier, David [1 ]
Delplace, Pierre [1 ]
Fruchart, Michel [1 ]
Gawedzki, Krzysztof [1 ]
机构
[1] Ecole Normale Super Lyon, Phys Lab, F-69007 Lyon, France
关键词
QUANTIZATION; INSULATOR; STATES; PHASE;
D O I
10.1103/PhysRevLett.114.106806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a new Z(2)-valued index to characterize the topological properties of periodically driven two dimensional crystals when the time-reversal symmetry is enforced. This index is associated with a spectral gap of the evolution operator over one period of time. When two such gaps are present, the Kane-Mele index of the eigenstates with eigenvalues between the gaps is recovered as the difference of the gap indices. This leads to an expression for the Kane-Mele invariant in terms of the Wess-Zumino amplitude. We illustrate the relation of the new index to the edge states in finite geometries by numerically solving an explicit model on the square lattice that is periodically driven in a time-reversal invariant way.
引用
收藏
页数:5
相关论文
共 44 条
[1]  
[Anonymous], ARXIV14064156
[2]   Symmetries, topological phases, and bound states in the one-dimensional quantum walk [J].
Asboth, J. K. .
PHYSICAL REVIEW B, 2012, 86 (19)
[3]   HOMOTOPY AND QUANTIZATION IN CONDENSED MATTER PHYSICS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (01) :51-53
[4]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[5]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[6]   SOME REMARKS ON PAPER OF CALLIAS [J].
BOTT, R ;
SEELEY, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (03) :235-245
[7]  
Dubrovin B. A., 1985, GRADUATE TEXTS MATH, V104
[8]  
Fang KJ, 2012, NAT PHOTONICS, V6, P782, DOI [10.1038/nphoton.2012.236, 10.1038/NPHOTON.2012.236]
[9]   Dynamics of tunneling into nonequilibrium edge states [J].
Fregoso, Benjamin M. ;
Dahlhaus, Jan P. ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2014, 90 (15)
[10]   Topological insulators with inversion symmetry [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2007, 76 (04)