Degree for S1-equivariant strongly indefinite functionals

被引:9
作者
Rybicki, S [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Informat, PL-87100 Torun, Poland
关键词
degree theory; Hamiltonian systems;
D O I
10.1016/S0362-546X(99)00203-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems concerning differential equations are of variational nature, where their solutions can be considered as critical points of functionals defined on a suitably chosen functional Hilbert space. Functionals that are strongly indefinite and S1-equivariant are considered. In infinite-dimensional case this invariant is defined for S1-equivariant orthogonal operators of the form compact perturbation of identity.
引用
收藏
页码:1001 / 1017
页数:17
相关论文
共 16 条
[1]   SADDLE POINTS AND MULTIPLE SOLUTIONS OF DIFFERENTIAL-EQUATIONS [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1979, 169 (02) :127-166
[2]   PERIODIC-SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN-SYSTEMS [J].
AMANN, H ;
ZEHNDER, E .
MANUSCRIPTA MATHEMATICA, 1980, 32 (1-2) :149-189
[3]   SOLUTIONS OF ASYMPTOTICALLY LINEAR OPERATOR-EQUATIONS VIA MORSE-THEORY [J].
CHANG, KC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (05) :693-712
[4]   A unified approach to a class of strongly indefinite functionals [J].
Costa, DG ;
Magalhaes, CA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :521-547
[5]  
Dancer E.N., 1999, DIFFER INTEGRAL EQU, V12, P147
[6]  
DANCER EN, 1985, ANN I H POINCARE-AN, V2, P473
[7]  
DANCER EN, 1984, J REINE ANGEW MATH, V350, P301
[8]  
IZE J, 1992, MEM AMS, V100
[9]   MORSE-THEORY AND ASYMPTOTIC LINEAR HAMILTONIAN SYSTEM [J].
LI, S ;
LIU, JQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :53-73
[10]  
MAWHIN J, 1989, APPL MATH SCI, V74