ON A NONCRITICAL SYMMETRIC SQUARE L-VALUE OF THE CONGRUENT NUMBER ELLIPTIC CURVES

被引:0
作者
Samart, Detchat [1 ,2 ]
机构
[1] Burapha Univ, Dept Math, Chon Buri 20131, Thailand
[2] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
关键词
elliptic curve; symmetric square L-function; Eisenstein-Kronecker series; elliptic polylogarithm;
D O I
10.1017/S000497271900056X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The congruent number elliptic curves are defined by Ed : y2 = x3 d2x, where d 2 N. We give a simple proof of a formula for L(Sym2(Ed); 3) in terms of the determinant of the elliptic trilogarithm evaluated at some degree zero divisors supported on the torsion points on E-d((Q) over bar).
引用
收藏
页码:13 / 22
页数:10
相关论文
共 13 条
[1]  
Bloch S. J., 2000, CRM Monograph Series, V11
[2]  
COATES J, 1987, J REINE ANGEW MATH, V375, P104
[3]  
Glasser M. L., 1980, Theoretical Chemistry: Advances and Perspectives, V5, P67
[4]  
Goncharov A. B., 1998, LONDON MATH SOC LECT, V254, P147
[5]   Zagier's conjecture on L(E,2) [J].
Goncharov, AB ;
Levin, AM .
INVENTIONES MATHEMATICAE, 1998, 132 (02) :393-432
[6]  
Koblitz N., 1993, GRADUATE TEXTS MATH, V97
[7]  
MESTRE JF, 1991, PROGR MATH, V89, P209
[8]  
Ono K., 2004, CBMS REGIONAL C SERI, V102.
[9]   The elliptic trilogarithm and Mahler measures of K3 surfaces [J].
Samart, Detchat .
FORUM MATHEMATICUM, 2016, 28 (03) :405-423
[10]   Three-variable Mahler measures and special values of modular and Dirichlet L-series [J].
Samart, Detchat .
RAMANUJAN JOURNAL, 2013, 32 (02) :245-268