A generalized lucas sequence and permutation binomials

被引:26
|
作者
Akbary, A
Wang, Q
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
D O I
10.1090/S0002-9939-05-08220-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be an odd prime and q = pm. Let l be an odd positive integer. Let p = -1 (mod l) or p = 1 (mod l) and l | m. By employing the integer sequence a(n) = (t=1)Sigma(l-1/2) (2 cos (pi(2t-1)) / (l))(n), which can be considered as a generalized Lucas sequence, we construct all the permutation binomials P(x) = x(r) + x(u) of the finite field F-q.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 50 条
  • [1] A certain generalized Lucas sequence and its application to the permutation binomials over finite fields
    Zhang, Zhilin
    Li, Hongjian
    Tian, Delu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [2] ON PERMUTATION BINOMIALS
    Ayad, Mohamed
    Belghaba, Kacem
    Kihel, Omar
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (02) : 389 - 399
  • [3] Permutation binomials and their groups
    Vasilev N.N.
    Rybalkin M.A.
    Journal of Mathematical Sciences, 2011, 179 (6) : 679 - 689
  • [4] ON PERMUTATION BINOMIALS OVER FINITE FIELDS
    Ayad, Mohamed
    Belghaba, Kacem
    Kihel, Omar
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 112 - 124
  • [5] Nonexistence of permutation binomials of certain shapes
    Masuda, Ariane M.
    Zieve, Michael E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [6] PERMUTATION BINOMIALS OVER FINITE FIELDS
    Masuda, Ariane M.
    Zieve, Michael E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) : 4169 - 4180
  • [7] Determination of a type of permutation binomials and trinomials
    R. K. Sharma
    Rohit Gupta
    Applicable Algebra in Engineering, Communication and Computing, 2020, 31 : 65 - 86
  • [8] Permutation binomials over finite fields
    Oliveira, Jose Alves
    Brochero Martinez, F. E.
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [9] Determination of a type of permutation binomials and trinomials
    Sharma, R. K.
    Gupta, Rohit
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2020, 31 (01) : 65 - 86
  • [10] BINOMIALS TRANSFORMATION FORMULAE OF SCALED LUCAS NUMBERS
    Witula, Roman
    DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 15 - 27