Existence of stable standing waves for the nonlinear Schro spacing diaeresis dinger equation with mixed power-type and Choquard-type nonlinearities

被引:0
作者
Shi, Chao [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 03期
关键词
nonlinear Schrodinger equation; standing waves; orbital stability; NORMALIZED GROUND-STATES; SCHRODINGER-EQUATIONS; ORBITAL STABILITY; UNIQUENESS;
D O I
10.3934/math.2022211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of stable standing waves for the following nonlinear Schro spacing diaeresis dinger type equation with mixed power-type and Choquard-type nonlinearities i partial derivative(t)psi + Delta psi + lambda vertical bar psi vertical bar(q)psi + 1/vertical bar x vertical bar(alpha) (integral(RN) vertical bar psi vertical bar(p)/vertical bar x - y vertical bar mu vertical bar y vertical bar(alpha)dy)vertical bar psi vertical bar(p-2)psi = 0, where N >= 3, 0 < mu < N, lambda>0, alpha >= 0, 2 alpha + mu <= N, 0 < q < 4/N and 2 - 2 alpha+mu/N < p < 2N-2 alpha-mu/N-2 . We firstly obtain the best constant of a generalized Gagliardo-Nirenberg inequality, and then we prove the existence and orbital stability of standing waves in the L-2-subcritical, L-2-critical and L-2-supercritical cases by the concentration compactness principle in a systematic way.
引用
收藏
页码:3802 / 3825
页数:24
相关论文
共 44 条
[11]  
Feng BH, 2020, J DYN DIFFER EQU, V32, P1357, DOI 10.1007/s10884-019-09779-6
[12]   Existence of stable standing waves for the fractional Schrodinger equations with combined power-type and Choquard-type nonlinearities [J].
Feng, Binhua ;
Chen, Ruipeng ;
Ren, Jiajia .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
[13]   Stability of standing waves for the fractional Schrodinger-Hartree equation [J].
Feng, Binhua ;
Zhang, Honghong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) :352-364
[14]   ON THE CAUCHY PROBLEM FOR THE SCHRODINGER-HARTREE EQUATION [J].
Feng, Binhua ;
Yuan, Xiangxia .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (04) :431-445
[15]   Existence of solutions for critical Choquard equations via the concentration-compactness method [J].
Gao, Fashun ;
Silva, Edcarlos D. ;
Yang, Minbo ;
Zhou, Jiazheng .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :921-954
[16]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[17]   Existence of solutions with prescribed norm for semilinear elliptic equations [J].
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1633-1659
[18]  
Jeanjean L., ORBITAL STABILITY GR
[19]   New approximate analytical solutions for the nonlinear fractional Schrodinger equation with second-order spatio-temporal dispersion via double Laplace transform method [J].
Kaabar, Mohammed K. A. ;
Martinez, Francisco ;
Francisco Gomez-Aguilar, Jose ;
Ghanbari, Behzad ;
Kaplan, Melike ;
Gunerhan, Hatira .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) :11138-11156
[20]   On some novel solution solutions to the generalized Schrodinger-Boussinesq equations for the interaction between complex short wave and real long wave envelope [J].
Kumar, Dipankar ;
Hosseini, Kamyar ;
Kaabar, Mohammed K. A. ;
Kaplan, Melike ;
Salahshour, Soheil .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (04) :353-362