Existence of stable standing waves for the nonlinear Schro spacing diaeresis dinger equation with mixed power-type and Choquard-type nonlinearities

被引:0
作者
Shi, Chao [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 03期
关键词
nonlinear Schrodinger equation; standing waves; orbital stability; NORMALIZED GROUND-STATES; SCHRODINGER-EQUATIONS; ORBITAL STABILITY; UNIQUENESS;
D O I
10.3934/math.2022211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of stable standing waves for the following nonlinear Schro spacing diaeresis dinger type equation with mixed power-type and Choquard-type nonlinearities i partial derivative(t)psi + Delta psi + lambda vertical bar psi vertical bar(q)psi + 1/vertical bar x vertical bar(alpha) (integral(RN) vertical bar psi vertical bar(p)/vertical bar x - y vertical bar mu vertical bar y vertical bar(alpha)dy)vertical bar psi vertical bar(p-2)psi = 0, where N >= 3, 0 < mu < N, lambda>0, alpha >= 0, 2 alpha + mu <= N, 0 < q < 4/N and 2 - 2 alpha+mu/N < p < 2N-2 alpha-mu/N-2 . We firstly obtain the best constant of a generalized Gagliardo-Nirenberg inequality, and then we prove the existence and orbital stability of standing waves in the L-2-subcritical, L-2-critical and L-2-supercritical cases by the concentration compactness principle in a systematic way.
引用
收藏
页码:3802 / 3825
页数:24
相关论文
共 44 条
[1]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[2]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[3]  
Cazenave T., 2003, SEMILINEAR SCHRODING, DOI [10.11429/sugaku.0644425, DOI 10.11429/SUGAKU.0644425]
[4]   Normalized Solutions for Nonautonomous Schrodinger Equations on a Suitable Manifold [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1637-1660
[5]   Semiclassical states for Choquard type equations with critical growth: critical frequency case [J].
Ding, Yanheng ;
Gao, Fashun ;
Yang, Minbo .
NONLINEARITY, 2020, 33 (12) :6695-6728
[6]  
Dinh V. D., NONLINEAR SCHRODINGE
[7]   UNIQUENESS AND NONDEGENERACY OF SOLUTIONS FOR A CRITICAL NONLOCAL EQUATION [J].
Du, Lele ;
Yang, Minbo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (10) :5847-5866
[8]   Stability and instability of standing waves for the fractional nonlinear Schrodinger equations [J].
Feng, Binhua ;
Zhu, Shihui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 292 :287-324
[9]   Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation [J].
Feng, Binhua ;
Cao, Leijin ;
Liu, Jiayin .
APPLIED MATHEMATICS LETTERS, 2021, 115
[10]   Blow-up criteria and instability of normalized standing waves for the fractional Schrodinger-Choquard equation [J].
Feng Binhua ;
Chen, Ruipeng ;
Liu, Jiayin .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :311-330