Effects of elevated CO2 on the protein concentration of food crops:: a meta-analysis

被引:364
作者
Taub, Daniel R. [1 ,2 ]
Miller, Brian [1 ]
Allen, Holly [2 ]
机构
[1] Southwestern Univ, Dept Biol, Georgetown, TX 78626 USA
[2] Southwestern Univ, Environm Studies Program, Georgetown, TX 78626 USA
关键词
carbon dioxide; crops; food; meta-analysis; nitrogen; nutrient; nutrition; protein;
D O I
10.1111/j.1365-2486.2007.01511.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Meta-analysis techniques were used to examine the effect of elevated atmospheric carbon dioxide [CO2] on the protein concentrations of major food crops, incorporating 228 experimental observations on barley, rice, wheat, soybean and potato. Each crop had lower protein concentrations when grown at elevated (540-958 mu mol mol(-1)) compared with ambient (315-400 mu mol mol(-1)) CO2. For wheat, barley and rice, the reduction in grain protein concentration was similar to 10-15% of the value at ambient CO2. For potato, the reduction in tuber protein concentration was 14%. For soybean, there was a much smaller, although statistically significant reduction of protein concentration of 1.4%. The magnitude of the CO2 effect on wheat grains was smaller under high soil N conditions than under low soil N. Protein concentrations in potato tubers were reduced more for plants grown at high than at low concentrations of ozone. For soybean, the ozone effect was the reverse, as elevated CO2 increased the protein concentration of soybean grown at high ozone concentrations. The magnitude of the CO2 effect also varied depending on experimental methodology. For both wheat and soybean, studies performed in open-top chambers produced a larger CO2 effect than those performed using other types of experimental facilities. There was also indication of a possible pot artifact as, for both wheat and soybean, studies performed in open-top chambers showed a significantly greater CO2 effect when plants were rooted in pots rather than in the ground. Studies on wheat also showed a greater CO2 effect when protein concentration was measured in whole grains rather than flour. While the magnitude of the effect of elevated CO2 varied depending on the experimental procedures, a reduction in protein concentration was consistently found for most crops. These findings suggest that the increasing CO2 concentrations of the 21st century are likely to decrease the protein concentration of many human plant foods.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 50 条
  • [1] Assessing impact of elevated CO2 on heavy metal accumulation in crops: meta-analysis and implications for food security
    Yang, Xunzhe
    Yun, Ping
    Zhao, Xiaoxiang
    Zhang, Zhe
    Chen, Chen
    Zhou, Yonghong
    Chen, Yinglong
    Zhang, Haiqin
    Shabala, Sergey
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 952
  • [2] Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis
    Hu, Enzhu
    Ren, Zhimin
    Xu, Sheng
    Zhang, Weiwei
    SUSTAINABILITY, 2021, 13 (08)
  • [3] Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops
    van der Kooi, Casper J.
    Reich, Martin
    Loew, Markus
    De Kok, Luit J.
    Tausz, Michael
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2016, 122 : 150 - 157
  • [4] Altered root traits due to elevated CO2: a meta-analysis
    Nie, Ming
    Lu, Meng
    Bell, Jennifer
    Raut, Swastika
    Pendall, Elise
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2013, 22 (10): : 1095 - 1105
  • [5] Seed germination and rising atmospheric CO2 concentration: a meta-analysis of parental and direct effects
    Marty, Charles
    BassiriRad, Hormoz
    NEW PHYTOLOGIST, 2014, 202 (02) : 401 - 414
  • [6] Nitrogen application is required to realize wheat yield stimulation by elevated CO2 but will not remove the CO2-induced reduction in grain protein concentration
    Pleijel, Hakan
    Broberg, Malin C.
    Hoegy, Petra
    Uddling, Johan
    GLOBAL CHANGE BIOLOGY, 2019, 25 (05) : 1868 - 1876
  • [7] A meta-analysis of plant physiological and growth responses to temperature and elevated CO2
    Wang, Dan
    Heckathorn, Scott A.
    Wang, Xianzhong
    Philpott, Stacy M.
    OECOLOGIA, 2012, 169 (01) : 1 - 13
  • [8] Assessing elevated CO2 responses using meta-analysis
    Curtis, PS
    Jablonski, LM
    Wang, XZ
    NEW PHYTOLOGIST, 2003, 160 (01) : 6 - 7
  • [9] Impacts of elevated atmospheric CO2 on nutrient content of important food crops
    Dietterich, Lee H.
    Zanobetti, Antonella
    Kloog, Itai
    Huybers, Peter
    Leakey, Andrew D. B.
    Bloom, Arnold J.
    Carlisle, Eli
    Fernando, Nimesha
    Fitzgerald, Glenn
    Hasegawa, Toshihiro
    Holbrook, N. Michele
    Nelson, Randall L.
    Norton, Robert
    Ottman, Michael J.
    Raboy, Victor
    Sakai, Hidemitsu
    Sartor, Karla A.
    Schwartz, Joel
    Seneweera, Saman
    Usui, Yasuhiro
    Yoshinaga, Satoshi
    Myers, Samuel S.
    SCIENTIFIC DATA, 2015, 2
  • [10] A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology
    Peter S. Curtis
    Xianzhong Wang
    Oecologia, 1998, 113 : 299 - 313