Effects of elevated CO2 on the protein concentration of food crops:: a meta-analysis

被引:374
作者
Taub, Daniel R. [1 ,2 ]
Miller, Brian [1 ]
Allen, Holly [2 ]
机构
[1] Southwestern Univ, Dept Biol, Georgetown, TX 78626 USA
[2] Southwestern Univ, Environm Studies Program, Georgetown, TX 78626 USA
关键词
carbon dioxide; crops; food; meta-analysis; nitrogen; nutrient; nutrition; protein;
D O I
10.1111/j.1365-2486.2007.01511.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Meta-analysis techniques were used to examine the effect of elevated atmospheric carbon dioxide [CO2] on the protein concentrations of major food crops, incorporating 228 experimental observations on barley, rice, wheat, soybean and potato. Each crop had lower protein concentrations when grown at elevated (540-958 mu mol mol(-1)) compared with ambient (315-400 mu mol mol(-1)) CO2. For wheat, barley and rice, the reduction in grain protein concentration was similar to 10-15% of the value at ambient CO2. For potato, the reduction in tuber protein concentration was 14%. For soybean, there was a much smaller, although statistically significant reduction of protein concentration of 1.4%. The magnitude of the CO2 effect on wheat grains was smaller under high soil N conditions than under low soil N. Protein concentrations in potato tubers were reduced more for plants grown at high than at low concentrations of ozone. For soybean, the ozone effect was the reverse, as elevated CO2 increased the protein concentration of soybean grown at high ozone concentrations. The magnitude of the CO2 effect also varied depending on experimental methodology. For both wheat and soybean, studies performed in open-top chambers produced a larger CO2 effect than those performed using other types of experimental facilities. There was also indication of a possible pot artifact as, for both wheat and soybean, studies performed in open-top chambers showed a significantly greater CO2 effect when plants were rooted in pots rather than in the ground. Studies on wheat also showed a greater CO2 effect when protein concentration was measured in whole grains rather than flour. While the magnitude of the effect of elevated CO2 varied depending on the experimental procedures, a reduction in protein concentration was consistently found for most crops. These findings suggest that the increasing CO2 concentrations of the 21st century are likely to decrease the protein concentration of many human plant foods.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 101 条
[1]  
Adams DC, 1997, ECOLOGY, V78, P1277, DOI 10.2307/2265879
[2]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[3]   A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield [J].
Ainsworth, EA ;
Davey, PA ;
Bernacchi, CJ ;
Dermody, OC ;
Heaton, EA ;
Moore, DJ ;
Morgan, PB ;
Naidu, SL ;
Ra, HSY ;
Zhu, XG ;
Curtis, PS ;
Long, SP .
GLOBAL CHANGE BIOLOGY, 2002, 8 (08) :695-709
[4]   NONSTRUCTURAL CARBOHYDRATES AND NITROGEN OF SOYBEAN GROWN UNDER CARBON-DIOXIDE ENRICHMENT [J].
ALLEN, LH ;
VU, JCV ;
VALLE, RR ;
BOOTE, KJ ;
JONES, PH .
CROP SCIENCE, 1988, 28 (01) :84-94
[5]   ENERGY CONTENT, CONSTRUCTION COST AND PHYTOMASS ACCUMULATION OF GLYCINE-MAX (L) MERR AND SORGHUM-BICOLOR (L) MOENCH GROWN IN ELEVATED CO2 IN THE FIELD [J].
AMTHOR, JS ;
MITCHELL, RJ ;
RUNION, GB ;
ROGERS, HH ;
PRIOR, SA ;
WOOD, CW .
NEW PHYTOLOGIST, 1994, 128 (03) :443-450
[6]   Effects of atmospheric CO2 concentration on wheat yield:: review of results from experiments using various approaches to control CO2 concentration [J].
Amthor, JS .
FIELD CROPS RESEARCH, 2001, 73 (01) :1-34
[7]  
[Anonymous], 2005, Investing in development: A practical plan to achieve the millennium development goals
[8]  
[Anonymous], 1990, OFF METH AN
[9]  
[Anonymous], METAWIN STAT SOFTWAR
[10]  
[Anonymous], 1994, The handbook of research synthesis