Lagrange wavelets for signal processing

被引:12
作者
Shi, Z [1 ]
Wei, GW
Kouri, DJ
Hoffman, DK
Bao, Z
机构
[1] Univ Houston, Dept Phys, Houston, TX 77204 USA
[2] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[3] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[4] Natl Key Lab Radar Signal Proc, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
distributed approximating functionals; generalized Lagrange wavelets; softer logic masking; visual group normalization;
D O I
10.1109/83.951535
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the design of interpolating wavelets based on a variety of Lagrange functions, combined with novel signal processing techniques for digital imaging. Halfband Lagrange wavelets, B-spline Lagrange wavelets and Gaussian Lagrange [Lagrange distributed approximating functional (DAF)] wavelets are presented as specific examples of the generalized Lagrange wavelets. Our approach combines the perceptually dependent visual group normalization (VGN) technique and a softer logic masking (SLM) method. These are utilized to rescale the wavelet coefficients, remove perceptual redundancy and obtain good visual performance for digital image processing.
引用
收藏
页码:1488 / 1508
页数:21
相关论文
共 49 条
[1]   WAVELET CONSTRUCTION USING LAGRANGE HALFBAND FILTERS [J].
ANSARI, R ;
GUILLEMOT, C ;
KAISER, JF .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (09) :1116-1118
[2]   SIGNAL-DEPENDENT TIME-FREQUENCY ANALYSIS USING A RADIALLY GAUSSIAN KERNEL [J].
BARANIUK, RG ;
JONES, DL .
SIGNAL PROCESSING, 1993, 32 (03) :263-284
[3]   Preservation of subband symmetry in multirate signal coding [J].
Brislawn, CM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (12) :3046-3050
[4]   Adaptive Bayesian wavelet shrinkage [J].
Chipman, HA ;
Kolaczyk, ED ;
McCullogh, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1413-1421
[5]  
Chui C. K., 1992, An introduction to wavelets, V1
[6]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[7]  
Cohen Albert, 1992, Wavelets: A Tutorial in Theory and Applications, V2, P123
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[9]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[10]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627