Periodic boundary value problems for second-order impulsive integro-differential equations

被引:17
作者
Li, Jianli [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsive equation; periodic boundary value problem; maximum principle; lower and upper solutions; monotone method;
D O I
10.1016/j.amc.2007.08.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of second-order impulsive differential equations. By developing a new maximum principle and using the monotone iterative technique, uniqueness of solution between a lower and an upper solution is presented. We give conditions for existence of extremal solutions in an interval delimited by a lower and an upper solution. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 16 条
[1]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[2]   Periodic Lienard-type delay equations with state-dependent impulses [J].
Belley, JM ;
Virgilio, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :568-589
[3]  
Cabada A, 2000, DYN CONTIN DISCRET I, V7, P145
[4]   Periodic boundary value problem for the second-order impulsive functional differential equations [J].
Ding, W ;
Han, M ;
Mi, JR .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (3-4) :491-507
[5]   Analysis of a delayed epidemic model with pulse vaccination and saturation incidence [J].
Gao, Shujing ;
Chen, Lansun ;
Nieto, Juan J. ;
Torres, Angela .
VACCINE, 2006, 24 (35-36) :6037-6045
[6]  
LI J, 2005, NONLINEAR STUDIES, V12, P391
[7]   Impulsive resonance periodic problems of first order [J].
Nieto, JJ .
APPLIED MATHEMATICS LETTERS, 2002, 15 (04) :489-493
[8]   Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations [J].
Nieto, JJ ;
Rodríguez-López, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :593-610
[9]   Remarks on periodic boundary value problems for functional differential equations [J].
Nieto, JJ ;
Rodríguez-López, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (02) :339-353