Genetic and physiological responses of Bacillus subtilis to metal ion stress

被引:122
|
作者
Moore, CM
Gaballa, A
Hui, M
Ye, RW
Helmann, JD [1 ]
机构
[1] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA
[2] DuPont Co Inc, Cent Res & Dev, Expt Stn, Wilmington, DE 19880 USA
关键词
D O I
10.1111/j.1365-2958.2005.04642.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metal ion homeostasis is regulated principally by metalloregulatory proteins that control metal ion uptake, storage and efflux genes. We have used transcriptional profiling to survey Bacillus subtilis for genes that are rapidly induced by exposure to high levels of metal ions including Ag(I), Cd(II), Cu(II), Ni(II) and Zn(II) and the metalloid As(V). Many of the genes affected by metal stress were controlled by known metalloregulatory proteins ( Fur, MntR, PerR, ArsR and CueR). Additional metal-induced genes are regulated by two newly defined metal-sensing ArsR/SmtB family repressors: CzrA and AseR. CzrA represses the CadA efflux ATPase and the cation diffusion facilitator CzcD and this repression is alleviated by Zn( II), Cd( II), Co( II), Ni( II) and Cu. CadA is the major determinant for Cd( II) resistance, while CzcD protects the cell against elevated levels of Zn( II), Cu, Co( II) and Ni( II). AseR negatively regulates itself and AseA, an As( III) efflux pump which contributes to arsenite resistance in cells lacking a functional ars operon. Our results extend the range of identified effectors for the As(III)- sensor ArsR to include Cd( II) and Ag( I) and for the Cu-sensor CueR to include Ag( I) and, weakly, Cd( II) and Zn( II). In addition to systems dedicated to metal homeostasis, specific metal stresses also strongly induced pathways related to cysteine, histidine and arginine metabolism.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 50 条
  • [1] Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus
    Hecker, Michael
    Reder, Alexander
    Fuchs, Stephan
    Pagels, Martin
    Engelmann, Susanne
    RESEARCH IN MICROBIOLOGY, 2009, 160 (04) : 245 - 258
  • [2] Metal ion homeostasis in Bacillus subtilis
    Moore, CM
    Helmann, JD
    CURRENT OPINION IN MICROBIOLOGY, 2005, 8 (02) : 188 - 195
  • [3] PHYSIOLOGICAL AND GENETIC-CHARACTERIZATION OF THE OSMOTIC-STRESS RESPONSE IN BACILLUS-SUBTILIS
    RUZAL, SM
    SANCHEZRIVAS, C
    CANADIAN JOURNAL OF MICROBIOLOGY, 1994, 40 (02) : 140 - 144
  • [4] PHYSIOLOGICAL AND GENETIC FACTORS AFFECTING TRANSFORMATION OF BACILLUS SUBTILIS
    YOUNG, FE
    SPIZIZEN, J
    JOURNAL OF BACTERIOLOGY, 1961, 81 (05) : 823 - &
  • [5] Macro-level and genetic-level responses of Bacillus subtilis to shear stress
    Sahoo, S
    Verma, RK
    Suresh, AK
    Rao, KK
    Bellare, J
    Suraishkumar, GK
    BIOTECHNOLOGY PROGRESS, 2003, 19 (06) : 1689 - 1696
  • [6] Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis
    Wilks, Jessica C.
    Kitko, Ryan D.
    Cleeton, Sarah H.
    Lee, Grace E.
    Ugwu, Chinagozi S.
    Jones, Brian D.
    BonDurant, Sandra S.
    Slonczewski, Joan L.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (04) : 981 - 990
  • [7] Morphological and biochemical responses of Bacillus subtilis to selenite stress
    Garbisu, C
    Carlson, D
    Adamkiewicz, M
    Yee, BC
    Wong, JH
    Resto, E
    Leighton, T
    Buchanan, BB
    BIOFACTORS, 1999, 10 (04) : 311 - 319
  • [8] Salt stress adaptation of Bacillus subtilis:: A physiological proteomics approach
    Höper, D
    Bernhardt, J
    Hecker, M
    PROTEOMICS, 2006, 6 (05) : 1550 - 1562
  • [9] The Metabolic and Physiological Responses to Spaceflight of a Lipopeptide-Producing Bacillus subtilis
    Qin, Wan-Qi
    Liu, Yi-Fan
    Liu, Jin-Feng
    Zhou, Lei
    Yang, Shi-Zhong
    Gu, Ji-Dong
    Mu, Bo-Zhong
    MICROBIAL BIOTECHNOLOGY, 2025, 18 (03):
  • [10] PHYSIOLOGICAL AND GENETIC STRATEGIES FOR ENHANCED SUBTILISIN PRODUCTION BY BACILLUS-SUBTILIS
    PIERCE, JA
    ROBERTSON, CR
    LEIGHTON, TJ
    BIOTECHNOLOGY PROGRESS, 1992, 8 (03) : 211 - 218