Incomplete Sparse Approximate Inverses for Parallel Preconditioning

被引:32
作者
Anzt, Hartwig [1 ,2 ]
Huckle, Thomas K. [3 ]
Braeckle, Juergen [3 ]
Dongarra, Jack [2 ,4 ,5 ]
机构
[1] Karlsruhe Inst Technol, Karlsruhe, Germany
[2] Univ Tennessee, Innovat Comp Lab, Knoxville, TN 37996 USA
[3] Tech Univ Munich, Dept Informat, Munich, Germany
[4] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England
[5] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
Preconditioning; Incomplete Sparse Approximate Inverse; Incomplete LU factorization; Approximate sparse triangular solves; Parallel computing; SYSTEMS;
D O I
10.1016/j.parco.2017.10.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The "Incomplete Sparse Approximate Inverses" (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. In a study covering a large number of matrices, we identify the ISAI preconditioner as an attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
[1]   Performance Tuning and Optimization Techniques of Fixed and Variable Size Batched Cholesky Factorization on GPUs [J].
Abdelfattah, Ahmad ;
Haidar, Azzam ;
Tomov, Stanimire ;
Dongarra, Jack .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 :119-130
[2]  
Anderson E., 1989, International Journal of High Speed Computing, V1, P73, DOI 10.1142/S0129053389000056
[3]  
[Anonymous], 2015, BD07317001V05 NVIDIA
[4]  
[Anonymous], CUDA C PROGR GUID V7
[5]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[6]  
[Anonymous], 1994, ITERATIVE SOLUTION M, DOI DOI 10.1017/CBO9780511624100
[7]  
Anzt H., DOMAIN OVERLAP ITERA, P527
[8]  
Anzt H., 2016, 6 INT WORKSH ACC HYB
[9]  
Anzt H., 2017, P 8 INT WORKSH PROGR, P1, DOI [10.1145/3026937.3026940, DOI 10.1145/3026937.3026940]
[10]   Updating incomplete factorization preconditioners for model order reduction [J].
Anzt, Hartwig ;
Chow, Edmond ;
Saak, Jens ;
Dongarra, Jack .
NUMERICAL ALGORITHMS, 2016, 73 (03) :611-630