Search via Parallel Levy Walks on Z2

被引:7
作者
Clementi, Andrea [1 ]
D'Amore, Francesco [2 ]
Giakkoupis, George [3 ]
Natale, Emanuele [2 ]
机构
[1] Univ Roma Tor Vergata, Rome, Italy
[2] Univ Cote dAzur, INRIA, CNRS, I3S, Sophia Antipolis, France
[3] Univ Rennes, CNRS, INRIA, IRISA, Rennes, France
来源
PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '21) | 2021年
关键词
Levy walk; parallel Levy walks; infinite 2D grid; hitting time; distributed search; Levy foraging hypothesis; ANTS problem; biological distributed algorithms; PATTERNS; FLIGHTS; SELECTION; CONTEXT; SUCCESS; TIME; ANTS;
D O I
10.1145/3465084.3467921
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by the Levy foraging hypothesis - the premise that various animal species have adapted to follow Levy walks to optimize their search efficiency - we study the parallel hitting time of Levy walks on the infinite two-dimensional grid. We consider k independent discrete-time Levy walks, with the same exponent alpha is an element of(1, infinity), that start from the same node, and analyze the number of steps until the first walk visits a given target at distance l. We show that for any choice of k and l from a large range, there is a unique optimal exponent alpha(k,l) is an element of(2, 3), for which the hitting time is (O) over tilde (l(2)/k) w.h.p., while modifying the exponent by any constant term epsilon > 0 increases the hitting time by a factor polynomial in l, or the walks fail to hit the target almost surely. Based on that, we propose a surprisingly simple and effective parallel search strategy, for the setting where k and l are unknown: The exponent of each Levy walk is just chosen independently and uniformly at random from the interval (2, 3). This strategy achieves optimal search time (modulo polylogarithmic factors) among all possible algorithms (even centralized ones that know k). Our results should be contrasted with a line of previous work showing that the exponent alpha = 2 is optimal for various search problems. In our setting of k parallel walks, we show that the optimal exponent depends on k and l, and that randomizing the choice of the exponents works simultaneously for all k and l.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 44 条
[1]   Many Random Walks Are Faster Than One [J].
Alon, Noga ;
Avin, Chen ;
Koucky, Michal ;
Kozma, Gady ;
Lotker, Zvi ;
Tuttle, Mark R. .
COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (04) :481-502
[2]   Random Walks with Multiple Step Lengths [J].
Boczkowski, Lucas ;
Guinard, Brieuc ;
Korman, Amos ;
Lotker, Zvi ;
Renault, Marc .
LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 :174-186
[3]   Scale-free foraging by primates emerges from their interaction with a complex environment [J].
Boyer, Denis ;
Ramos-Fernandez, Gabriel ;
Miramontes, Octavio ;
Mateos, Jose L. ;
Cocho, Germinal ;
Larralde, Hernan ;
Ramos, Humberto ;
Rojas, Fernando .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1595) :1743-1750
[4]   Comment on "Inverse Square Levy Walks are not Optimal Search Strategies for d ≥ 2" [J].
Buldyrev, S. V. ;
Raposo, E. P. ;
Bartumeus, F. ;
Havlin, S. ;
Rusch, F. R. ;
da Luz, M. G. E. ;
Viswanathan, G. M. .
PHYSICAL REVIEW LETTERS, 2021, 126 (04)
[5]   Average time spent by Levy flights and walks on an interval with absorbing boundaries [J].
Buldyrev, SV ;
Havlin, S ;
Kazakov, AY ;
da Luz, MGE ;
Raposo, EP ;
Stanley, HE ;
Viswanathan, GM .
PHYSICAL REVIEW E, 2001, 64 (04) :11-411081
[6]   Search via Parallel Levy Walks on Z2 [J].
Clementi, Andrea ;
D'Amore, Francesco ;
Giakkoupis, George ;
Natale, Emanuele .
PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '21), 2021, :81-91
[7]  
Cohen L, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P207
[8]  
Dubhashi D.P., 2009, CONCENTRATION MEASUR, DOI DOI 10.1017/CBO9780511581274
[9]   Revisiting Levy flight search patterns of wandering albatrosses, bumblebees and deer [J].
Edwards, Andrew M. ;
Phillips, Richard A. ;
Watkins, Nicholas W. ;
Freeman, Mervyn P. ;
Murphy, Eugene J. ;
Afanasyev, Vsevolod ;
Buldyrev, Sergey V. ;
da Luz, M. G. E. ;
Raposo, E. P. ;
Stanley, H. Eugene ;
Viswanathan, Gandhimohan M. .
NATURE, 2007, 449 (7165) :1044-U5
[10]  
Efremenko K, 2009, LECT NOTES COMPUT SC, V5687, P476, DOI 10.1007/978-3-642-03685-9_36