Structural optimization of contact electrodes in microbial fuel cells for current density enhancements

被引:35
作者
Inoue, Shogo [5 ]
Parra, Erika A. [1 ,5 ]
Higa, Adrienne [5 ]
Jiang, Yingqi [5 ]
Wang, Pengbo [2 ,5 ]
Buie, Cullen R. [3 ,5 ]
Coates, John D. [4 ]
Lin, Liwei [5 ]
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] China Agr Univ, Coll Engn, Beijing, Peoples R China
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mech Engn, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
关键词
Microbial fuel cell; Current density; Power density; Carbon nanotube; Geobacter sulfurreducens; POWER; GENERATION;
D O I
10.1016/j.sna.2011.09.023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
More than 200% current density enhancement in miniaturized microbial fuel cells (MFCs) has been successfully demonstrated by optimizing the contact electrode structure using micro and nano features. Two fundamental issues are addressed in this work: (1) a methodology to enhance current/power density of MFCs by changing micro and nano structural configurations of contact electrodes and (2) a study on the effectiveness of charge transfer between living cells with organic nanowire-pili and micro/nano interfacial electrodes. This paper details the fabrication and characterization processes of miniaturized MFCs with experimental results, and discusses the prospective power density of MFCs using micro/nano processes. Moreover, a hypothesis for the direct electron transport mechanism from living cells to electrodes is experimentally corroborated. As such, this work represents a step toward higher energy conversion efficiency as well as practical applications of MFCs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 26 条
[1]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[2]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[3]   An innovative miniature microbial fuel cell fabricated using photolithography [J].
Chen, You-Peng ;
Zhao, Yue ;
Qiu, Ke-Qiang ;
Chu, Jian ;
Lu, Rui ;
Sun, Min ;
Liu, Xian-Wei ;
Sheng, Guo-Ping ;
Yu, Han-Qing ;
Chen, Jie ;
Li, Wen-Jie ;
Liu, Gang ;
Tian, Yang-Chao ;
Xiong, Ying .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (06) :2841-2846
[4]  
Chiao M, 2003, PROC IEEE MICR ELECT, P383
[5]   Micromachined microbial and photosynthetic fuel cells [J].
Chiao, Mu ;
Lam, Kien B. ;
Lin, Liwei .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (12) :2547-2553
[6]  
Choi S, 2011, PROC IEEE MICR ELECT, P1289, DOI 10.1109/MEMSYS.2011.5734669
[7]  
Choi S, 2011, LAB CHIP, V11, P1110, DOI [10.1039/c0lc00494d, 10.1039/c01c00494d]
[8]   Study of the cytotoxicity of CCVD carbon nanotubes [J].
Flahaut, E ;
Durrieu, MC ;
Remy-Zolghadri, M ;
Bareille, R ;
Baquey, C .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (08) :2411-2416
[9]  
Inoue S, 2011, PROC IEEE MICR ELECT, P1297, DOI 10.1109/MEMSYS.2011.5734671
[10]   PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS [J].
Jiang, Y. Q. ;
Zhou, Q. ;
Lin, L. .
IEEE 22ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2009), 2009, :587-590