High-order contrasts for independent component analysis

被引:824
作者
Cardoso, JF [1 ]
机构
[1] Ecole Natl Super Telecommun Bretagne, F-75634 Paris 13, France
关键词
D O I
10.1162/089976699300016863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article considers high-order measures of independence for the independent component analysis problem and discusses the class of Jacobi algorithms for their optimization. Several implementations are discussed. We compare the proposed approaches with gradient-based techniques from the algorithmic point of view and also on a set of biomedical data.
引用
收藏
页码:157 / 192
页数:36
相关论文
共 29 条
[1]  
Amari S, 1996, ADV NEUR IN, V8, P757
[2]  
AMARI S, 1996, P NIPS
[3]  
[Anonymous], PROC EUSIPCO
[4]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[5]  
Cardoso J.-F., 1992, IEEE Sixth SP Workshop on Statistical Signal and Array Processing Conference Proceedings (Cat. No.92TH0410-1), P136, DOI 10.1109/SSAP.1992.246830
[6]  
Cardoso J.F., 1995, P NOLTA, P55
[7]   Infomax and maximum likelihood for blind source separation [J].
Cardoso, JF .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) :112-114
[8]   BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS [J].
CARDOSO, JF ;
SOULOUMIAC, A .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) :362-370
[9]   Equivariant adaptive source separation [J].
Cardoso, JF ;
Laheld, BH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :3017-3030
[10]  
CARDOSO JF, 1996, P IEEE WORKSH SSAP C