GPU-accelerated rectangular decomposition for sound propagation modeling in 2D

被引:3
作者
Chango, Juan F. [1 ]
Navarro, Cristobal A. [1 ]
Gonzalez-Montenegro, Mario A. [2 ]
机构
[1] Univ Austral Chile, Inst Informat, Valdivia, Chile
[2] Univ Austral Chile, Ctr Docencia Ciencias Basicas Ingn, Valdivia, Chile
来源
2019 38TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC) | 2019年
关键词
sound propagation; rectangular decomposition method; parallel computing; CUDA; BINARY IMAGES; EFFICIENT; COMPUTATION; ALGORITHM; QUADTREE; SOLVER;
D O I
10.1109/sccc49216.2019.8966434
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Adaptive Rectangular Decomposition (ARD) is an efficient technique for modeling the sound propagation. This technique reduces the computational overhead and memory requirements by using non-dispersive sub-rectangular domains suitable for parallel computation. In order to use this technique, the scene should be decomposed into large inscribed rectangles. For large and complex scenes, it is not feasible to find an optimal set of large rectangles and thus an approximation should be used. In this paper, we present a GPU-accelerated algorithm for searching an adequate rectangular decomposition of a 2D scene in a reasonable time. Our algorithm performs a fast parallel search in the entire domain. As a result, large and complex scenes can be decomposed in seconds and it enables them to be numerically modeled in parallel using ARD.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
Bell Nathan, 2012, GPU computing gems Jade edition, P359, DOI [DOI 10.1016/B978-0-12-385963-1.00026-5, 10.1016/B978-0-12-385963-1.00026-5]
[2]   DISTANCE TRANSFORMATIONS IN DIGITAL IMAGES [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (03) :344-371
[3]   Exact algorithms and APX-hardness results for geometric packing and covering problems [J].
Chan, Timothy M. ;
Grant, Elyot .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (02) :112-124
[5]  
Ciskowski R.D., 1991, BOUNDARY ELEMENT MET
[6]   COVERING POLYGONS IS HARD [J].
CULBERSON, JC ;
RECKHOW, RA .
JOURNAL OF ALGORITHMS, 1994, 17 (01) :2-44
[7]   AN EFFICIENT ALGORITHM FOR COMPUTATION OF SHAPE MOMENTS FROM RUN-LENGTH CODES OR CHAIN CODES [J].
DAI, M ;
BAYLOU, P ;
NAJIM, M .
PATTERN RECOGNITION, 1992, 25 (10) :1119-1128
[8]  
Engquist B., 2003, Acta Numerica, V12, P181, DOI 10.1017/S0962492902000119
[9]  
Eppstein D, 2010, LECT NOTES COMPUT SC, V5911, P1, DOI 10.1007/978-3-642-11409-0_1
[10]  
Everstine G. C., 2000, FINITE ELEMENT SOLUT