A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries

被引:193
作者
Li, Hucheng [1 ,2 ]
Yang, Huicong [1 ,2 ]
Sun, Zhenhua [1 ]
Shi, Ying [1 ]
Cheng, Hui-Ming [1 ,3 ]
Li, Feng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei, Anhui, Peoples R China
[3] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Aluminum-ion batteries; Energy storage; Cathode materials; Cobalt sulfides; Ionic liquid electrolytes; LITHIUM; INTERCALATION; NANOSHEETS; V2O5; AL; FABRICATION; MECHANISM; ELECTRODE; SURFACE; ANODE;
D O I
10.1016/j.nanoen.2018.11.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aluminum-ion batteries (AIBs) have been regarded as a promising candidate for large-scale stationary energy storage applications based on their low cost, good safety and high volumetric capacity. However, the lack of suitable cathode materials with highly reversible aluminum storage has hindered their practical use. Here, we demonstrate a highly reversible AIB using porous Co(3)S(4 )microspheres as the cathode material. The microstructure gives Co3S4 a superior electrochemical performance to most other cathode materials for AIBs reported so far. It is further shown that the cell undergoes Al3+ intercalation/deintercalation with Co3+/Co2+ as a redox couple in the cathode, and electrochemical stripping/plating of metallic aluminum in the anode. We also found that the diffusion of Al3+ in the host Co(3)S(4 )is the key kinetic step that limits the discharge/charge current density. This work is a step forward in the development of a low-cost cathode material for high-performance AIBs and contributes to a better understanding of AIB chemistry.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
[1]   Trends in Aluminium-Based Intercalation Batteries [J].
Ambroz, Filip ;
Macdonald, Thomas J. ;
Nann, Thomas .
ADVANCED ENERGY MATERIALS, 2017, 7 (15)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery [J].
Bhauriyal, Preeti ;
Mahata, Arup ;
Pathak, Biswarup .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (11) :7980-7989
[4]   Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life [J].
Chen, Hao ;
Xu, Hanyan ;
Wang, Siyao ;
Huang, Tieqi ;
Xi, Jiabin ;
Cai, Shengying ;
Guo, Fan ;
Xu, Zhen ;
Gao, Weiwei ;
Gao, Chao .
SCIENCE ADVANCES, 2017, 3 (12)
[5]   Hydrothermal fabrication and characterization of polycrystalline linneite (Co3S4) nanotubes based on the Kirkendall effect [J].
Chen, Xiangying ;
Zhang, Zhongjie ;
Qiu, Zhiguo ;
Shi, Chengwu ;
Li, Xueliang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 308 (01) :271-275
[6]   Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery [J].
Chiku, Masanobu ;
Takeda, Hiroki ;
Matsumura, Shota ;
Higuchi, Eiji ;
Inoue, Hiroshi .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (44) :24385-24389
[7]   A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries [J].
Childress, Anthony S. ;
Parajuli, Prakash ;
Zhu, Jingyi ;
Podila, Ramakrishna ;
Rao, Apparao M. .
NANO ENERGY, 2017, 39 :69-76
[8]   Aluminium-ion batteries: developments and challenges [J].
Das, Shyamal K. ;
Mahapatra, Sadhan ;
Lahan, Homen .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (14) :6347-6367
[9]   Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage [J].
Du, Yichen ;
Zhu, Xiaoshu ;
Zhou, Xiaosi ;
Hu, Lingyun ;
Dai, Zhihui ;
Bao, Jianchun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6787-6791
[10]   An Overview and Future Perspectives of Aluminum Batteries [J].
Elia, Giuseppe Antonio ;
Marquardt, Krystan ;
Hoeppner, Katrin ;
Fantini, Sebastien ;
Lin, Rongying ;
Knipping, Etienne ;
Peters, Willi ;
Drillet, Jean-Francois ;
Passerini, Stefano ;
Hahn, Robert .
ADVANCED MATERIALS, 2016, 28 (35) :7564-7579