Data-driven density estimation in the presence of additive noise with unknown distribution

被引:51
作者
Comte, F. [1 ]
Lacour, C. [2 ]
机构
[1] Univ Paris 05, Lab MAP5, F-75006 Paris, France
[2] Univ Paris 11, Orsay, France
关键词
Adaptive estimation; Deconvolution; Density estimation; Mean-square risk; Minimax rates; Non-parametric methods; NONPARAMETRIC DECONVOLUTION; WAVELET DECONVOLUTION; ERROR DISTRIBUTION; OPTIMAL RATES; CONVERGENCE; SAMPLE;
D O I
10.1111/j.1467-9868.2011.00775.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the model Y = X + epsilon. We assume that we have at our disposal independent identically distributed observations Y(1), ... ,Y(n) and epsilon(-1), ... ,epsilon(-M). The (X(j))(1 <= j <= n) are independent identically distributed with density f, independent of the (epsilon(j))(1 <= j <= n), independent identically distributed with density f(epsilon). The aim of the paper is to estimate f without knowing f(epsilon). We first define an estimator, for which we provide bounds for the integrated L(2)-risk. We consider ordinary smooth and supersmooth noise epsilon with regard to ordinary smooth and supersmooth densities f. Then we present an adaptive estimator of the density of f. This estimator is obtained by penalization of a projection contrast and yields to model selection. Lastly, we present simulation experiments to illustrate the good performances of our estimator and study from the empirical point of view the importance of theoretical constraints.
引用
收藏
页码:601 / 627
页数:27
相关论文
共 32 条
[21]   Nonparametric estimation of the measurement error model using multiple indicators [J].
Li, T ;
Vuong, Q .
JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 65 (02) :139-165
[22]   A CONSISTENT NONPARAMETRIC DENSITY ESTIMATOR FOR THE DECONVOLUTION PROBLEM [J].
LIU, MC ;
TAYLOR, RL .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (04) :427-438
[23]   MULTIVARIATE PROBABILITY DENSITY DECONVOLUTION FOR STATIONARY RANDOM-PROCESSES [J].
MASRY, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1105-1115
[24]   On the effect of misspecifying the error density in a deconvolution problem [J].
Meister, A .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (04) :439-449
[25]  
Neumann M.H., 1997, Journal of Nonparametric Statistics, V7, P307
[26]   Deconvolution from panel data with unknown error distribution [J].
Neumann, Michael H. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (10) :1955-1968
[27]   Removing the effects of additive noise from TIRM measurements [J].
Odiachi, PC ;
Prieve, DC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 270 (01) :113-122
[28]  
Pensky M, 1999, ANN STAT, V27, P2033
[29]  
Stefanski LA, 1990, Statistics, V21, P169, DOI DOI 10.1080/02331889008802238
[30]   New concentration inequalities in product spaces [J].
Talagrand, M .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :505-563