Data-driven density estimation in the presence of additive noise with unknown distribution

被引:51
作者
Comte, F. [1 ]
Lacour, C. [2 ]
机构
[1] Univ Paris 05, Lab MAP5, F-75006 Paris, France
[2] Univ Paris 11, Orsay, France
关键词
Adaptive estimation; Deconvolution; Density estimation; Mean-square risk; Minimax rates; Non-parametric methods; NONPARAMETRIC DECONVOLUTION; WAVELET DECONVOLUTION; ERROR DISTRIBUTION; OPTIMAL RATES; CONVERGENCE; SAMPLE;
D O I
10.1111/j.1467-9868.2011.00775.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the model Y = X + epsilon. We assume that we have at our disposal independent identically distributed observations Y(1), ... ,Y(n) and epsilon(-1), ... ,epsilon(-M). The (X(j))(1 <= j <= n) are independent identically distributed with density f, independent of the (epsilon(j))(1 <= j <= n), independent identically distributed with density f(epsilon). The aim of the paper is to estimate f without knowing f(epsilon). We first define an estimator, for which we provide bounds for the integrated L(2)-risk. We consider ordinary smooth and supersmooth noise epsilon with regard to ordinary smooth and supersmooth densities f. Then we present an adaptive estimator of the density of f. This estimator is obtained by penalization of a projection contrast and yields to model selection. Lastly, we present simulation experiments to illustrate the good performances of our estimator and study from the empirical point of view the importance of theoretical constraints.
引用
收藏
页码:601 / 627
页数:27
相关论文
共 32 条
[1]  
[Anonymous], 1997, Festschrift for lucien le cam
[2]   Deconvolution of supersmooth densities with smooth noise [J].
Butucea, C .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (02) :181-192
[3]  
butucea c., 2007, I. Teor. Veroyatn. Primen., V52, P111
[4]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[5]   Deconvolution with arbitrarily smooth kernels [J].
Cator, EA .
STATISTICS & PROBABILITY LETTERS, 2001, 54 (02) :205-214
[6]   Wavelet deconvolution with noisy eigenvalues [J].
Cavalier, Laurent ;
Raimondo, Marc .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (06) :2414-2424
[7]   Finite sample penalization in adaptive density deconvolution [J].
Comte, F. ;
Rozenholc, Y. ;
Taupin, M. -L. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2007, 77 (11-12) :977-1000
[8]   Penalized contrast estimator for adaptive density deconvolution [J].
Comte, Fabienne ;
Rozenholc, Yves ;
Taupin, Marie-Luce .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (03) :431-452
[9]   Bootstrap bandwidth selection in kernel density estimation from a contaminated sample [J].
Delaigle, A ;
Gijbels, I .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (01) :19-47
[10]   On deconvolution with repeated measurements [J].
Delaigle, Aurore ;
Hall, Peter ;
Meister, Alexander .
ANNALS OF STATISTICS, 2008, 36 (02) :665-685