The conjugate heat equation and Ancient solutions of the Ricci flow

被引:56
作者
Cao, Xiaodong [2 ]
Zhang, Qi S. [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Ricci flow; Type I ancient solutions; Singularity model; SOLITONS; KERNEL;
D O I
10.1016/j.aim.2011.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Gaussian type bounds for the fundamental solution of the conjugate heat equation evolving under the Ricci flow. As a consequence, for dimension 4 and higher, we show that the backward limit of Type I kappa-solutions of the Ricci flow must be a non-flat gradient shrinking Ricci soliton. This extends Perelman's previous result on backward limits of kappa-solutions in dimension 3, in which case the curvature operator is nonnegative (it follows from Hamilton-lvey curvature pinching estimate). As an application, this also addresses an issue left in Naber (2010) [23], where Naber proves the interesting result that there exists a Type I dilation limit that converges to a gradient shrinking Ricci soliton, but that soliton might be flat. The Gaussian bounds that we obtain on the fundamental solution of the conjugate heat equation under evolving metric might be of independent interest. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2891 / 2919
页数:29
相关论文
共 32 条
  • [1] Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow
    Arnaudon, Marc
    Coulibaly, Kolehe Abdoulaye
    Thalmaier, Anton
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (13-14) : 773 - 778
  • [2] Gradient estimates for the heat equation under the Ricci flow
    Bailesteanu, Mihai
    Cao, Xiaodong
    Pulemotov, Artem
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3517 - 3542
  • [3] Differential Harnack estimates for backward heat equations with potentials under the Ricci flow
    Cao, Xiaodong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) : 1024 - 1038
  • [4] DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS
    Cao, Xiaodong
    Hamilton, Richard S.
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) : 989 - 1000
  • [5] Pseudolocality for the Ricci Flow and Applications
    Chau, Albert
    Tam, Luen-Fai
    Yu, Chengjie
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (01): : 55 - 85
  • [6] Chen BL, 2009, J DIFFER GEOM, V82, P363
  • [7] CHOW B, 2007, MATH SURVEYS MONOG 1, V135
  • [8] CHOW B, 2010, MATH SURVEYS MONOG 3
  • [9] Davies E.B., 1990, HEAT KERNELS SPECTRA, V92
  • [10] ENDERS J, 2010, ARXIV10051624V1 MATH