An Integrated Framework for the Spatio-Temporal-Spectral Fusion of Remote Sensing Images

被引:284
作者
Shen, Huanfeng [1 ,2 ]
Meng, Xiangchao [3 ]
Zhang, Liangpei [4 ,5 ]
机构
[1] Wuhan Univ, Sch Resources & Environm Sci, Key Lab Geog Informat Syst, Minist Educ, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China
[4] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[5] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 12期
基金
中国国家自然科学基金;
关键词
Image fusion; integrated framework; remote sensing; spatial resolution; spectral resolution; temporal resolution; REFLECTANCE FUSION; MULTIRESOLUTION FUSION; MULTISPECTRAL IMAGES; SUPER RESOLUTION; MAP ESTIMATION; SENSED IMAGES; SUPERRESOLUTION; LANDSAT; ENHANCEMENT; ALGORITHM;
D O I
10.1109/TGRS.2016.2596290
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio-temporal-spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio-spectral fusion, and spatio-temporal fusion, based on a single unified model, and it can achieve the integrated fusion of multisource observations to obtain high spatio-temporal-spectral resolution images, without limitations on the number of remote sensing sensors. The proposed integrated fusion framework was comprehensively tested and verified in a variety of image fusion experiments. In the experiments, a number of different remote sensing satellites were utilized, including IKONOS, the Enhanced Thematic Mapper Plus (ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Hyperspectral Digital Imagery Collection Experiment (HYDICE), and Systeme Pour l' Observation de la Terre-5 (SPOT-5). The experimental results confirm the effectiveness of the proposed method.
引用
收藏
页码:7135 / 7148
页数:14
相关论文
共 87 条
[1]   Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis [J].
Aiazzi, B ;
Alparone, L ;
Baronti, S ;
Garzelli, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2300-2312
[2]  
Aiazzi B., 2012, Signal and Image Processing for Remote Sensing, VSecond, P533, DOI DOI 10.1201/B11656-30
[3]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[4]  
Alparone L., 2015, Remote Sensing Image Fusion
[5]   Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest [J].
Alparone, Luciano ;
Wald, Lucien ;
Chanussot, Jocelyn ;
Thomas, Claire ;
Gamba, Paolo ;
Bruce, Lori Mann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3012-3021
[6]   Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring [J].
Amoros-Lopez, Julia ;
Gomez-Chova, Luis ;
Alonso, Luis ;
Guanter, Luis ;
Zurita-Milla, Raul ;
Moreno, Jose ;
Camps-Valls, Gustavo .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 :132-141
[7]   A variational model for P+XS image fusion [J].
Ballester, Coloma ;
Caselles, Vicent ;
Igual, Laura ;
Verdera, Joan ;
Rougé, Bernard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 69 (01) :43-58
[8]  
BASEDOW RW, 1995, P SOC PHOTO-OPT INS, V2480, P258, DOI 10.1117/12.210881
[9]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[10]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65