HARMONIC SECTIONS OF TANGENT BUNDLES EQUIPPED WITH RIEMANNIAN g-NATURAL METRICS

被引:21
作者
Abbassi, M. T. K. [2 ]
Calvaruso, G. [1 ]
Perrone, D. [1 ]
机构
[1] Univ Salento, Dipartimento Matemat E De Giorgi, Lecce, Italy
[2] Univ Sidi Mohamed Ben Abdallah, Fac Sci Dhar El Mahraz, Dept Math, Fes, Fes, Morocco
关键词
UNIT VECTOR-FIELDS; ENERGY; MANIFOLDS; MAPPINGS; VOLUME;
D O I
10.1093/qmath/hap040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a Riemannian manifold. When M is compact and the tangent bundle TM is equipped with the Sasaki metric g(s), the only vector fields that define harmonic maps from (M, g) to (TM, g(s)) are the parallel ones. The Sasaki metric and other well-known Riemannian metrics on TM are particular examples of g-natural metrics. We equip TM with an arbitrary Riemannian g-natural metric G and investigate the harmonicity of a vector field V of M, thought as a map from (M, g) to (TM, G). We then apply this study to the Reeb vector field of a contact metric manifold and, in particular, to Hopf vector fields on odd-dimensional spheres.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 30 条
[1]  
ABBASSI KMT, HOUSTON J M IN PRESS
[2]  
ABBASSI KMT, 2009, ANN MATH BLAISE PASC, V16, P305
[3]   Harmonicity of unit vector fields with respect to Riemannian g-natural metrics [J].
Abbassi, M. T. K. ;
Calvaruso, G. ;
Perrone, D. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (01) :157-169
[4]  
Abbassi MTK, 2005, ARCH MATH-BRNO, V41, P71
[5]   On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds [J].
Abbassi, MTK ;
Sarih, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) :19-47
[6]  
[Anonymous], 2001, INT J MATH MATH SCI, DOI DOI 10.1155/S0161171201002009
[7]  
[Anonymous], 2002, RIEMANNIAN GEOMETRY
[8]   Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type [J].
Benyounes, M. ;
Loubeau, E. ;
Wood, C. M. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (03) :322-334
[9]  
BENYOUNES M, 2008, ARXIV08092725V1, P1
[10]  
BENYOUNES M, 2007, ARXIVMATHDG0703060V1, P1