Numerical and Experimental Investigation of a Velocity Compounded Radial Re-Entry Turbine for Small-Scale Waste Heat Recovery

被引:2
作者
Weiss, Andreas P. [1 ]
Stuempfl, Dominik [1 ]
Streit, Philipp [1 ]
Shoemaker, Patrick [2 ]
Hildebrandt, Thomas [2 ]
机构
[1] East Bavarian Tech Univ Appl Sci Amberg Weiden, Ctr Excellence Cogenerat Technol, Kaiser Wilhelm Ring 23, D-92224 Amberg, Germany
[2] NUMECA Ingn Buro Altdorf, Turkeistr 11, D-90518 Altdorf, Germany
关键词
turbine; radial; velocity compounded; re-entry; Elektra;
D O I
10.3390/en15010245
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The energy industry must change dramatically in order to reduce CO2-emissions and to slow down climate change. Germany, for example, decided to shut down all large nuclear (2022) and fossil thermal power plants by 2038. Power generation will then rely on fluctuating renewables such as wind power and solar. However, thermal power plants will still play a role with respect to waste incineration, biomass, exploitation of geothermal wells, concentrated solar power (CSP), power-to-heat-to-power plants (P2H2P), and of course waste heat recovery (WHR). While the multistage axial turbine has prevailed for the last hundred years in power plants of the several hundred MW class, this architecture is certainly not the appropriate solution for small-scale waste heat recovery below 1 MW or even below 100 kW. Simpler, cost-effective turbo generators are required. Therefore, the authors examine uncommon turbine architectures that are known per se but were abandoned when power plants grew due to their poor efficiency compared to the multistage axial machines. One of these concepts is the so-called Elektra turbine, a velocity compounded radial re-entry turbine. The paper describes the concept of the Elektra turbine in comparison to other turbine concepts, especially other velocity compounded turbines, such as the Curtis type. In the second part, the 1D design and 3D computational fluid dynamics (CFD) optimization of the 5 kW air turbine demonstrator is explained. Finally, experimentally determined efficiency characteristics of various early versions of the Elektra are presented, compared, and critically discussed regarding the originally defined design approach. The unsteady CFD calculation of the final Elektra version promised 49.4% total-to-static isentropic efficiency, whereas the experiments confirmed 44.5%.
引用
收藏
页数:22
相关论文
共 26 条
  • [1] [Anonymous], 2019, EL INF OV
  • [2] Pumped Thermal Electricity Storage: A technology overview
    Benato, Alberto
    Stoppato, Anna
    [J]. THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 6 : 301 - 315
  • [3] Evans D.G., 1959, Nasa Memorandum: Design and Experimental Investigation of a Three-Stage Multiple-Reentry Turbine
  • [4] HARRIS FR, 1984, P I MECH ENG A-J POW, V198, P183
  • [5] Hirsch C., 1991, P ESA AER SPAC VEH 1, P415
  • [6] Jameson A., 1981, 14 FLUID PLASM DYN C, DOI DOI 10.2514/6.1981-1259
  • [7] Klonowicz P., 2011, P ES 2011 10 C POW S
  • [8] Kolb O., 1907, U.S. Patent, Patent No. [842211A, 842211]
  • [9] Kraus J., 2021, P EINDRUCK 3 ONL 17
  • [10] Kryllowicz W., 2015, Energetyka, V11, P719