Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions

被引:85
作者
Gong, Fan [1 ,2 ,3 ,4 ]
Fang, Hehai [3 ,4 ]
Wang, Peng [3 ,4 ]
Su, Meng [1 ,2 ]
Li, Qing [3 ]
Ho, Johnny C. [5 ]
Chen, Xiaoshuang [3 ,4 ]
Lu, Wei [3 ,4 ]
Liao, Lei [1 ,2 ]
Wang, Jun [6 ]
Hu, Weida [3 ]
机构
[1] Wuhan Univ, Dept Phys, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[6] Univ Elect Sci & Technol China, Sch Optoelect Informat, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
关键词
MoS2; vertical Schottky junction; dark current; photodetectors; LAYER MOS2; PHOTOTRANSISTORS;
D O I
10.1088/1361-6528/aa9172
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Over the past few years, two-dimensional (2D) nanomaterials, such as MoS2, have been widely considered as the promising channel materials for next-generation high-performance phototransistors. However, their device performances still mostly suffer from slow photoresponse (e.g. with the time constant in the order of milliseconds) due to the relatively long channel length and the substantial surface defect induced carrier trapping, as well as the insufficient detectivity owing to the relatively large dark current. In this work, a simple multilayer MoS2 based photodetector employing vertical Schottky junctions of Au-MoS2-ITO is demonstrated. This unique device structure can significantly suppress the dark current down to 10(-12) A and enable the fast photoresponse of 64 mu s, together with the stable responsivity of similar to 1AW(-1) and the high photocurrent to dark current ratio of similar to 10(6) at room temperature. This vertical-Schottky photodetector can also exhibit a wide detection range from visible to 1000 nm. All these results demonstrate clearly that the vertical Schottky structure is an effective configuration for achieving high-performance optoelectronic devices based on 2D materials.
引用
收藏
页数:7
相关论文
共 23 条
[1]  
Barote MA, 2011, DIG J NANOMATER BIOS, V6, P979
[2]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[3]   High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared [J].
Choi, Woong ;
Cho, Mi Yeon ;
Konar, Aniruddha ;
Lee, Jong Hak ;
Cha, Gi-Beom ;
Hong, Soon Cheol ;
Kim, Sangsig ;
Kim, Jeongyong ;
Jena, Debdeep ;
Joo, Jinsoo ;
Kim, Sunkook .
ADVANCED MATERIALS, 2012, 24 (43) :5832-5836
[4]   Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides [J].
Das, Saptarshi ;
Prakash, Abhijith ;
Salazar, Ramon ;
Appenzeller, Joerg .
ACS NANO, 2014, 8 (02) :1681-1689
[5]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[6]   Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W) [J].
Frey, GL ;
Elani, S ;
Homyonfer, M ;
Feldman, Y ;
Tenne, R .
PHYSICAL REVIEW B, 1998, 57 (11) :6666-6671
[7]   Few-Layer MoS2: A Promising Layered Semiconductor [J].
Ganatra, Rudren ;
Zhang, Qing .
ACS NANO, 2014, 8 (05) :4074-4099
[8]   High-Sensitivity Floating-Gate Phototransistors Based on WS2 and MoS2 [J].
Gong, Fan ;
Luo, Wenjin ;
Wang, Jianlu ;
Wang, Peng ;
Fang, Hehai ;
Zheng, Dingshan ;
Guo, Nan ;
Wang, Jingli ;
Luo, Man ;
Ho, Johnny C. ;
Chen, Xiaoshuang ;
Lu, Wei ;
Liao, Lei ;
Hu, Weida .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (33) :6084-6090
[9]   Schottky barrier heights for Au and Pd contacts to MoS2 [J].
Kaushik, Naveen ;
Nipane, Ankur ;
Basheer, Firdous ;
Dubey, Sudipta ;
Grover, Sameer ;
Deshmukh, Mandar M. ;
Lodha, Saurabh .
APPLIED PHYSICS LETTERS, 2014, 105 (11)
[10]  
Konstantatos G, 2010, NAT NANOTECHNOL, V5, P391, DOI [10.1038/NNANO.2010.78, 10.1038/nnano.2010.78]