Qualitative behavior of two systems of higher-order difference equations

被引:7
作者
Khan, A. Q. [1 ]
Qureshi, Andm. N. [1 ]
机构
[1] Univ Azad Jammu & Kashmir, Dept Math, Muzaffarabad 13100, Pakistan
关键词
difference equations; local stability; global character; rate of convergence; ANTI-COMPETITIVE SYSTEM; GLOBAL BEHAVIOR; STABILITY;
D O I
10.1002/mma.3752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the qualitative behavior of following two systems of higher-order difference equations: x(n+1) = alpha x(n-k)/beta + gamma gamma(2)(n-k+1), y(n+1) = alpha(1)y(n-k)/beta(1) + gamma(1)x(n-k+1)(2), n = 0, 1, . . . , and x(n+1) = alpha gamma(n-k)/b + cx(n-k+1)(2), y(n+1) = alpha(1)x(n-k)/b(1) + c(1)y(n-k+1)(2), n = 0, 1, . . . , where the parameters alpha, beta, alpha(1), beta(1), gamma(1), a, b, c, a(1), b(1), and c(1) and the initial conditions x(0), x(-1), . . . , x(-k), y(0), y(-1), . . . , y(-k) are positive real numbers. More precisely, we study the equilibrium points, local asymptotic stability, instability, global asymptotic stability of equilibrium points, and rate of convergence of positive solutions that converges to the equilibrium point P-0 = (0,0) of these systems. Some numerical examples are given to verify our theoretical results. These examples are experimental verification of our theoretical discussions. Copyright (C) 2015 JohnWiley & Sons, Ltd.
引用
收藏
页码:3058 / 3074
页数:17
相关论文
共 32 条
  • [1] GLOBAL BEHAVIOR OF A THIRD ORDER DIFFERENCE EQUATION
    Abo-Zeid, R.
    Al-Shabi, M. A.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (03): : 375 - 383
  • [2] Abo-Zeid R., 2010, Journal of Applied Mathematics and Informatics, V28, P797
  • [3] Agarwal RP, 2000, Difference Equations and Inequalities. Theory, DOI [10.1201/9781420027020, DOI 10.1201/9781420027020]
  • [4] Al-Shabi M. A., 2010, APPL MATH SCI-BULG, V4, P839
  • [5] [Anonymous], 2001, MATH SCI RES HOT LIN
  • [6] [Anonymous], ADV DIFFERENCE EQ
  • [7] [Anonymous], LIFE SCI J
  • [8] [Anonymous], 2013, Nonlinear Difference Equations: Theory with Applications to Social Science Models
  • [9] Camouzis E., 2007, DYNAMICS 3 ORDER RAT
  • [10] Din Q, 2012, ADV DIFFER EQS, V2012, P1