A Survey on Resource Allocation in Vehicular Networks

被引:134
作者
Noor-A-Rahim, Md [1 ]
Liu, Zilong [2 ]
Lee, Haeyoung [3 ]
Ali, G. G. Md Nawaz [4 ]
Pesch, Dirk [1 ]
Xiao, Pei [3 ]
机构
[1] Univ Coll Cork, Sch Comp Sci & IT, Cork T12 YN60, Ireland
[2] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
[3] Univ Surrey, Inst Commun Syst, 5G Innovat Ctr, Guildford GU2 7XH, Surrey, England
[4] Univ Charleston, Dept Appl Comp Sci, Charleston, WV 25304 USA
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 爱尔兰科学基金会;
关键词
Resource management; Wireless communication; Machine learning; Long Term Evolution; Intelligent transportation systems; Quality of service; Technological innovation; Intelligent transportation system; vehicular network; autonomous driving; DSRC V2X; cellular V2X; resource allocation; network slicing; machine learning; IEEE; 802.11P; PERFORMANCE ANALYSIS; CHANNEL ESTIMATION; DATA ACCESS; LOW-LATENCY; SYSTEMS; DESIGN; CLOUD; ARCHITECTURE; RELIABILITY;
D O I
10.1109/TITS.2020.3019322
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vehicular networks, an enabling technology for Intelligent Transportation System (ITS), smart cities, and autonomous driving, can deliver numerous on-board data services, e.g., road-safety, easy navigation, traffic efficiency, comfort driving, infotainment, etc. Providing satisfactory Quality of Service (QoS) in vehicular networks, however, is a challenging task due to a number of limiting factors such as erroneous and congested wireless channels (due to high mobility or uncoordinated channel-access), increasingly fragmented and congested spectrum, hardware imperfections, and anticipated growth of vehicular communication devices. Therefore, it will be critical to allocate and utilize the available wireless network resources in an ultra-efficient manner. In this paper, we present a comprehensive survey on resource allocation schemes for the two dominant vehicular network technologies, e.g. Dedicated Short Range Communications (DSRC) and cellular based vehicular networks. We discuss the challenges and opportunities for resource allocations in modern vehicular networks and outline a number of promising future research directions.
引用
收藏
页码:701 / 721
页数:21
相关论文
共 129 条
[1]   A Survey on Radio Resource Allocation in Cognitive Radio Sensor Networks [J].
Ahmad, Ayaz ;
Ahmad, Sadiq ;
Rehmani, Mubashir Husain ;
Ul Hassan, Naveed .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (02) :888-917
[2]   Secure Resource Allocation for LTE-Based V2X Service [J].
Ahmed, Kazi J. ;
Lee, Myung J. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (12) :11324-11331
[3]   Mobility impact in IEEE 802.11p infrastructureless vehicular networks [J].
Alasmary, Waleed ;
Zhuang, Weihua .
AD HOC NETWORKS, 2012, 10 (02) :222-230
[4]   Efficient Real-Time Coding-Assisted Heterogeneous Data Access in Vehicular Networks [J].
Ali, G. G. Md. Nawaz ;
Noor-A-Rahim, Md. ;
Rahman, Md. Ashiqur ;
Samantha, Syeda Khairunnesa ;
Chong, Peter Han Joo ;
Guan, Yong Liang .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (05) :3499-3512
[5]   Analysis and Improvement of Reliability Through Coding for Safety Message Broadcasting in Urban Vehicular Networks [J].
Ali, G. G. Md. Nawaz ;
Noor-A-Rahim, Md. ;
Chong, Peter Han Joo ;
Guan, Yong Liang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (08) :6774-6787
[6]  
[Anonymous], 2014, HS812014 DOS HS
[7]  
[Anonymous], 2010, ZTE COMMUN
[8]  
[Anonymous], 2016, ARXIV160800572
[9]   LTE for Vehicular Networking: A Survey [J].
Araniti, Giuseppe ;
Campolo, Claudia ;
Condoluci, Massimo ;
Iera, Antonio ;
Molinaro, Antonella .
IEEE COMMUNICATIONS MAGAZINE, 2013, 51 (05) :148-157
[10]   Deep Reinforcement Learning A brief survey [J].
Arulkumaran, Kai ;
Deisenroth, Marc Peter ;
Brundage, Miles ;
Bharath, Anil Anthony .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) :26-38