Defective DP-colorings of sparse simple graphs

被引:4
作者
Jing, Yifan [1 ]
Kostochka, Alexandr [1 ,2 ]
Ma, Fuhong [3 ]
Xu, Jingwei [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 俄罗斯基础研究基金会;
关键词
Defective coloring; List coloring; DP-coloring; LIST IMPROPER COLORINGS; VERTEX DECOMPOSITIONS; MAXIMUM DEGREE; PLANAR GRAPHS; CHOOSABILITY; SUBGRAPH; GIRTH; (K;
D O I
10.1016/j.disc.2021.112637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
DP-coloring (also known as correspondence coloring) is a generalization of list coloring developed recently by Dvorak and Postle. We introduce and study (i, j)-defective DP-colorings of simple graphs. Let gDP(i, j, n) be the minimum number of edges in an n-vertex DP-(i, j)-critical graph. In this paper we determine sharp bound on g(DP)(i, j, n) for each i >= 3 and j >= 2i + 1 for infinitely many n. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 30 条
[1]   A NOTE ON DEFECTIVE COLORINGS OF GRAPHS IN SURFACES [J].
ARCHDEACON, D .
JOURNAL OF GRAPH THEORY, 1987, 11 (04) :517-519
[2]   ON DP-COLORING OF GRAPHS AND MULTIGRAPHS [J].
Bernshteyn, A. Yu. ;
Kostochka, A. V. ;
Pron, S. P. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (01) :28-36
[3]   Defective 2-colorings of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. V. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 104 :72-80
[4]   On 1-improper 2-coloring of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. ;
Yancey, M. .
DISCRETE MATHEMATICS, 2013, 313 (22) :2638-2649
[5]   (k, 1)-coloring of sparse graphs [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Raspaud, A. .
DISCRETE MATHEMATICS, 2012, 312 (06) :1128-1135
[6]  
Borodin OV, 2011, SIBERIAN MATH J+, V52, P796
[7]   (k, j)-coloring of sparse graphs [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Raspaud, A. .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) :1947-1953
[8]   Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Ochem, P. ;
Raspaud, A. .
JOURNAL OF GRAPH THEORY, 2010, 65 (02) :83-93
[9]   DEFECTIVE COLORINGS OF GRAPHS IN SURFACES - PARTITIONS INTO SUBGRAPHS OF BOUNDED VALENCY [J].
COWEN, LJ ;
COWEN, RH ;
WOODALL, DR .
JOURNAL OF GRAPH THEORY, 1986, 10 (02) :187-195
[10]   Planar graphs are 1-relaxed, 4-choosable [J].
Cushing, William ;
Kierstead, H. A. .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) :1385-1397