Variational optimization algorithms for uniform matrix product states

被引:189
作者
Zauner-Stauber, V. [1 ]
Vanderstraeten, L. [2 ]
Fishman, M. T. [3 ]
Verstraete, F. [1 ,2 ]
Haegeman, J. [2 ]
机构
[1] Univ Vienna, Vienna Ctr Quantum Technol, Boltzmanngasse 5, A-1090 Vienna, Austria
[2] Univ Ghent, Fac Phys, Krijgslaan 281, B-9000 Ghent, Belgium
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
基金
欧洲研究理事会; 奥地利科学基金会; 美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; FORMULATION; TRANSITION; CHAIN; MODEL;
D O I
10.1103/PhysRevB.97.045145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
引用
收藏
页数:31
相关论文
共 70 条
[1]  
[Anonymous], J MATH PHYS
[2]  
[Anonymous], 2013, Matrix Analysis
[3]  
[Anonymous], COMMUNICATION
[4]  
[Anonymous], ARXIV10084667
[5]  
[Anonymous], ARXIV08042509
[6]   Hand-waving and interpretive dance: an introductory course on tensor networks [J].
Bridgeman, Jacob C. ;
Chubb, Christopher T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (22)
[7]   ONE-DIMENSIONAL MODELS WITH 1-R2 INTERACTIONS [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (06) :1407-1415
[8]   Variational optimization with infinite projected entangled-pair states [J].
Corboz, Philippe .
PHYSICAL REVIEW B, 2016, 94 (03)
[9]   Finite automata for caching in matrix product algorithms [J].
Crosswhite, Gregory M. ;
Bacon, Dave .
PHYSICAL REVIEW A, 2008, 78 (01)
[10]   Applying matrix product operators to model systems with long-range interactions [J].
Crosswhite, Gregory M. ;
Doherty, A. C. ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2008, 78 (03)