Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians

被引:16
作者
Carinena, Jose F. [1 ]
Fernandez Nunez, Jose [2 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Oviedo, Dept Fis, Fac Ciencias, C Calvo Sotelo SN, E-33007 Oviedo, Spain
关键词
Non-standard Lagrangians; Inverse problem; Deformation of Lagrangians; Equivalent deformations; NONSTANDARD LAGRANGIANS; EQUATION;
D O I
10.1007/s11071-016-2964-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The relationship of equations of motion of a Lagrangian to those of L is studied in the non-autonomous case, and the question of the existence of a function such that is dynamically equivalent to L is answered.
引用
收藏
页码:1285 / 1291
页数:7
相关论文
共 30 条
[1]  
ABRAHAM R., 1978, Foundations of Mechanics
[2]  
Carinena J. F., 1991, Differential Geometry and its Applications, V1, P345, DOI 10.1016/0926-2245(91)90013-Y
[3]   Lagrangian formalism for nonlinear second-order Riccati systems:: One-dimensional integrability and two-dimensional superintegrability -: art. no. 062703 [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)
[4]   Singular Lagrangians affine in velocities [J].
Cariñena, JF ;
Fernández-Núñez, J ;
Rañada, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (13) :3789-3807
[5]   NON-NOETHER CONSTANTS OF MOTION [J].
CARINENA, JF ;
IBORT, LA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01) :1-7
[6]   Geometric approach to dynamics obtained by deformation of Lagrangians [J].
Carinena, Jose F. ;
Fernandez Nunez, Jose .
NONLINEAR DYNAMICS, 2016, 83 (1-2) :457-461
[7]   On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator [J].
Chandrasekar, V. K. ;
Senthilvelan, M. ;
Lakshmanan, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
[8]   Unusual lienard-type nonlinear oscillator [J].
Chandrasekar, VK ;
Senthilvelan, M ;
Lakshmanan, M .
PHYSICAL REVIEW E, 2005, 72 (06)
[9]   A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients [J].
Cieslinski, Jan L. ;
Nikiciuk, Tomasz .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (17)
[10]  
Crampin M., 1986, Applicable Differential Geometry