Canonical analytical solutions of wave-induced thermoelastic attenuation

被引:25
作者
Carcione, Jose M. [1 ,2 ]
Gei, Davide [1 ]
Santos, Juan E. [2 ,3 ,4 ]
Fu, Li-Yun [5 ]
Ba, Jing [2 ]
机构
[1] Ist Nazl Oceanog & Geofis Sperimentale OGS, Borgo Grotta Gigante 42c, I-34010 Trieste, Italy
[2] Hohai Univ, Sch Earth Sci & Engn, Nanjing 210023, Peoples R China
[3] Univ Buenos Aires, Inst Gas & Petroleo, Fac Ingn, Av Las Heras 2214,Piso 3,C1127AAR, Buenos Aires, DF, Argentina
[4] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
[5] China Univ Petr East China, Sch Geosci, Qingdao 266580, Peoples R China
关键词
Elasticity and anelasticity; Body waves; Seismic attenuation; Wave propagation; INTERNAL-FRICTION; POROELASTICITY;
D O I
10.1093/gji/ggaa033
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Thermoelastic attenuation is similar to wave-induced fluid-flow attenuation (mesoscopic loss) due to conversion of the fast P wave to the slow (Biot) P mode. In the thermoelastic case, the P - and S-wave energies are lost because of thermal diffusion. The thermal mode is diffusive at low frequencies and wave-like at high frequencies, in the same manner as the Biot slow mode. Therefore, at low frequencies, that is, neglecting the inertial terms, a mathematical analogy can be established between the diffusion equations in poroelasticity and thermoelasticity. We study thermoelastic dissipation for spherical and cylindrical cavities (or pores) in 2-D and 3-D, respectively, and a finely layered system, where, in the latter case, only the Gruneisen ratio is allowed to vary. The results show typical quality-factor relaxation curves similar to Zener peaks. There is no dissipation when the radius of the pores tends to zero and the layers have the same properties. Although idealized, these canonical solutions are useful to study the physics of thermoelasticity and test numerical algorithm codes that simulate thermoelastic dissipation.
引用
收藏
页码:835 / 842
页数:8
相关论文
共 31 条
[1]   The Gruneisen ratio for the last 30 years [J].
Anderson, OL .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 143 (02) :279-294
[2]  
[Anonymous], 1988, THERMAL PROPERTIES R
[3]   MODELS FOR THERMOELASTIC ATTENUATION OF WAVES IN HETEROGENEOUS SOLIDS [J].
ARMSTRONG, BH .
GEOPHYSICS, 1984, 49 (07) :1032-1040
[4]   THERMOELASTICITY AND IRREVERSIBLE THERMODYNAMICS [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (03) :240-253
[5]  
Birch F., 1942, Handbook of physical constants
[6]   Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations [J].
Carcione, J. M. ;
Santos, J. E. ;
Picotti, S. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 186 (03) :1245-1254
[7]  
Carcione J. M, 2014, Handbook of Geophysical Exploration, V3rd
[8]   Physics and Simulation of Wave Propagation in Linear Thermoporoelastic Media [J].
Carcione, Jose M. ;
Cavallini, Fabio ;
Wang, Enjiang ;
Ba, Jing ;
Fu, Li-Yun .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (08) :8147-8166
[9]   On the Kramers-Kronig relations [J].
Carcione, Jose M. ;
Cavallini, Fabio ;
Ba, Jing ;
Cheng, Wei ;
Qadrouh, Ayman N. .
RHEOLOGICA ACTA, 2019, 58 (1-2) :21-28
[10]   Simulation of wave propagation in linear thermoelastic media [J].
Carcione, Jose M. ;
Wang, Zhi-Wei ;
Ling, Wenchang ;
Salusti, Ettore ;
Ba, Jing ;
Fu, Li-Yun .
GEOPHYSICS, 2019, 84 (01) :T1-T11