Wronskian method for one-dimensional quantum scattering

被引:13
作者
Fernandez, Francisco M. [1 ]
机构
[1] Natl Univ La Plata, 1INIFTA, CCT La Plata, CONICET, RA-1900 La Plata, Buenos Aires, Argentina
关键词
educational courses; physics education; quantum theory; Schrodinger equation; BARRIER PENETRATION; RESONANCES; TRANSMISSION;
D O I
10.1119/1.3596393
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The use of Wronskians with properly chosen linearly independent solutions of the Schroumldinger equation greatly facilitates the calculation of the transmission probability for scattering in one dimension and also provides a reliable test for the accuracy of the calculation. We apply the approach to a Gaussian barrier and a Gaussian well, and test its accuracy for an exactly solvable model. (C) 2011 American Association of Physics Teachers. [DOI: 10.1119/1.3596393]
引用
收藏
页码:877 / 881
页数:5
相关论文
共 28 条
[1]  
[Anonymous], 1961, QUANTUM MECH
[2]  
[Anonymous], 2002, Classical Mechanics
[3]  
Apostol T.M., 1969, Calculus, VII.
[4]   Quantum mechanical tunneling through barriers: A spreadsheet approach [J].
Cedillo, A .
JOURNAL OF CHEMICAL EDUCATION, 2000, 77 (04) :528-531
[5]   A STUDY OF BARRIER PENETRATION IN QUANTUM-MECHANICS [J].
CHALK, JD .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (01) :29-32
[6]   A SIMPLE TREATMENT OF POTENTIAL BARRIER PENETRATION [J].
COHEN, BL .
AMERICAN JOURNAL OF PHYSICS, 1965, 33 (02) :97-&
[7]  
Cohen-Tannoudji C., 1977, Quantum Mechanics, V2nd
[8]   USE OF PSI-2 AND FLUX TO SIMPLIFY ANALYSIS OF TRANSMISSION PAST RECTANGULAR BARRIERS OR WELLS [J].
DRAPER, JE .
AMERICAN JOURNAL OF PHYSICS, 1979, 47 (06) :525-530
[9]   Smooth double barriers in quantum mechanics [J].
Dutt, Avik ;
Kar, Sayan .
AMERICAN JOURNAL OF PHYSICS, 2010, 78 (12) :1352-1360
[10]   QUANTUM SCATTERING THEORY IN 1 DIMENSION [J].
EBERLY, JH .
AMERICAN JOURNAL OF PHYSICS, 1965, 33 (10) :771-&